<u>FINAL</u> <u>YEAR 5 (2018) MONITORING REPORT</u> UT TO MARTIN'S CREEK (CONTRERAS) MITIGATION PROJECT

Cherokee County, North Carolina
DMS Project No. 92766 (Contract No. 005717)
USACE Action ID No. 2010-00961/DWR Project No. 2010-00448
SCO No. 08-07249-01

Data Collection - March-November 2018

Hiwasssee River Basin Cataloging Unit 06020002170010

SUBMITTED TO/PREPARED FOR:

North Carolina Department of Environmental Quality Division of Mitigation Services 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

December 2018

<u>FINAL</u> <u>YEAR 5 (2018) MONITORING REPORT</u> UT TO MARTIN'S CREEK (CONTRERAS) MITIGATION PROJECT

Cherokee County, North Carolina
DMS Project No. 92766 (Contract No. 005717)
USACE Action ID No. 2010-00961/DWR Project No. 2010-00448
SCO No. 08-07249-01

Data Collection - March-November 2018

Hiwasssee River Basin Cataloging Unit 06020002170010

SUBMITTED TO/PREPARED FOR:

North Carolina Department of Environmental Quality Division of Mitigation Services 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

SUBMITTED BY:

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

December 2018

Axiom Environmental, Inc.

218 Snow Avenue, Raleigh, NC 27603 919-215-1693

December 5, 2018

Mr. Matthew Reid North Carolina Department of Environmental Quality Division of Mitigation Services 5 Ravenscroft Drive, Suite 102 Asheville, NC 28801

RE: UT to Martin's Creek (Contreras) Monitoring (DMS Project # 92633, Contract # 005717) Final MY5 (2018) Annual Monitoring Report

12-004.16

Dear Matthew:

Axiom Environmental, Inc. (AXE) is pleased to provide you with three hard copies and a CD of digital files for the Final UT to Martin's Creek (Contreras) Annual Monitoring Report. We received your comments via email on December 3, 2018 and have addressed them as follows:

• 2.2 Vegetation: Please add sentence at the end of the invasive species discussion: DMS will continue invasive species treatment in 2019.

This sentence was added at the end of the invasive species discussion.

2.2 Vegetation: Please add sentence to section discussing wetland delineation services: DMS is not seeking additional
wetland credit for the site.

This sentence was added to the section discussing wetland delineation services.

• Table 2: Please add two additional lines under Year 5 Monitoring for Vegetation Monitoring and Stream Monitoring with corresponding dates.

These rows have been added to Table 2.

- Cross Sections and Table 11: Please double check XS7 and XS8. According to Table 11a, these two sections did not hold the Abkf constant in the dimension calculations. Please update graphs and table as necessary.

 The data for cross sections 7 and 8 were revised to assure that the bankfull area remained fixed from last year's data. The graph and table were updated to reflect this change.
- As Axiom has done in the past, please include a response to the comment letter and how/where the comments were
 addressed. Please insert this letter directly behind the cover page in the final deliverables.
 This comment letter has been included just behind the cover page in the final deliverable. A word document is also
 included in the digital submittal.

Division of Mitigation Services Page 2 of 2

Axiom Environmental, Inc.

Please let me know if you have any questions or comments regarding any component of this submittal. Thank you for the opportunity to continue to assist the Division of Mitigation Services with this important project.

Sincerely,

AXIOM ENVIRONMENTAL, INC.

Kenan Jernigan Project Scientist

Attachments: 3 hardcopies Final UT to Martin's Creek (Contreras) MY5 (2018) Annual Monitoring Report

1 CD containing digital support files

Table of Contents

1.0 PROJECT SUMMARY	. 1
2.0 METHODOLOGY	. 3
2.1 Streams	
2.2 Vegetation	
3.0 REFERENCES	. 6
Appendices	
APPENDIX A. PROJECT BACKGROUND DATA AND MAPS	
Figure 1. Vicinity Map	
Table 1. Project Components and Mitigation Credits	
Table 2. Project Activity and Reporting History	
Table 3. Project Contacts Table	
Table 4. Project Baseline Information and Attributes	
APPENDIX B. VISUAL ASSESSMENT DATA	
Figure 2. Current Conditions Plan View	
Tables 5A-5D. Visual Stream Morphology Stability Assessment	
Table 6. Vegetation Condition Assessment	
Stream Fixed-Station Photographs	
Vegetation Monitoring Photographs	
APPENDIX C. VEGETATION PLOT DATA	
Table 7. Vegetation Plot Criteria Attainment	
Table 8. CVS Vegetation Plot Metadata	
Table 9. Total and Planted Stems by Plot and Species APPENDIX D. STREAM SURVEY DATA	
Cross-section Plots	
Longitudinal Profile Plots	
Substrate Plots	
Table 10a-10f. Baseline Stream Data Summary	
Table 11a-11f. Monitoring Data	
APPENDIX E. HYDROLOGY DATA	
Table 12. Verification of Bankfull Events	
APPENDIX F. WETLAND CONFIRMATION DATA	
Figure 3. Wetland Confirmation Overview	
Wetland Dataforms	
APPENDIX G. SUPPLEMENTAL DATA	
Figure 4. USGS Topography Map	
Figure 5. NRCS Soils Map	
Preconstruction Photographs	

1.0 PROJECT SUMMARY

The North Carolina Division of Mitigation Services (DMS) has established the UT to Martin's Creek (Contreras) Mitigation Project (Site) located in Cherokee County, just south of the town of Murphy. The Site is encompassed within 14-digit Cataloging Unit 06020002170010 of the Hiwassee River Basin (Figure 1, Appendix B and Table 4, Appendix A). Land use at the Site, prior to mitigation activities, was composed of agricultural uses, logging, grass land, single-family residences, and forested areas. Martin's Creek and its tributaries had been impaired by historical and current land management practices, which include timber harvesting, pasture, channelization, and livestock grazing. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

The Site is located on tributaries to Martin's Creek, which have been assigned Stream Index Number 1-49 and a Best Usage Classification of C. Site streams are listed on the NCDWQ draft 2014 and final 2012 Section 303(d) list of impaired streams due to a fair bioclassification for ecological/biological integrity and fish communities, and elevated levels of fecal coliform bacteria. The Site is located within a Targeted Local Watershed that has been identified for stream and buffer restoration opportunities (NCDMS 2008).

The Site lies within the focus area of the *Peachtree-Martins Creek Local Watershed Plan* (LWP). Goals of the LWP include working with local landowners, resource agencies, and nongovernmental groups to implement wetland and stream restoration projects that reduce sources of sediment and nutrients by restoring riparian buffers, stabilizing stream banks, and restoring natural channel geomorphology, particularly in headwater streams. The NCDMS is also placing an emphasis on projects that contribute to the restoration and protection of habitat for priority fish, mussel, snail, and crayfish species in the basin (NCDMS 2008).

The project goals will directly address stressors identified in the Peachtree-Martins Creek LWP, namely lack of riparian vegetation, channel modification, excess sediment inputs, excess nutrient inputs, and bacterial contamination as follows.

- Restore geomorphically stable stream channels within the Site;
- Restore or enhance wetlands;
- Exclude livestock from accessing project streams, wetlands, and riparian zones;
- Improve and restore hydrologic connections and achieve uplift of ecosystem functions;
- Improve water quality within the Site by reducing bank erosion, improving nutrient and sediment removal, and stabilizing stream banks;
- Restore and preserve headwater tributaries in the Peachtree-Martins Creek Watershed and the Hiwassee River; and
- Improve aquatic and terrestrial habitat by improving substrate and in-stream cover, adding woody debris, reducing water temperatures, and restoring riparian habitat.

In order to accomplish the goals of the project and contribute to the overall success of goals set forth for the greater Peachtree-Martin Creek local watershed planning area, a number of general project objectives and design objectives were identified for this project as follows.

General Project Objectives

- Utilize natural channel design concepts to restore or enhance channel profile, pattern, and dimension to reduce bank and channel profile degradation and to allow greater floodplain connectivity to aid in the dissipation of bankfull flows.
- Reduce stream bank degradation and sediment and nutrient inputs by limiting livestock access of project tributaries to crossings agreed upon between the NCDMS and the landowner.
- Further reduce sediment and nutrient inputs and stream bank instability by restoring or enhancing native riparian vegetation along a 30-foot buffer along the project reach.
- Improve channel bedform function and diversity by installing toe wood structures and grade control structures that also function to improve riffle and scour pool habitat.

Design Objectives

- Make important design decisions based on a geomorphic analyses of the Site, reference conditions, and hydraulic modeling.
- Consider field constraints and construction tolerances in order to produce a realistic design.
- Minimize disturbance to ecologically functional and physically stable areas and mimic the character of these areas to create a more natural design.
- Use native materials and minimize materials brought onsite to produce more favorable habitat for native flora and fauna, reduce compaction and onsite disturbance from material transport, and produce an aesthetically pleasing result.

The Site mitigation plan was completed in March 2010 with the final design and construction plans completed in November 2010 (Table 2, Appendix A). Project construction was completed between October 2012 and July 2013. The implemented mitigation is as follows (Figure 2, Appendix B and Table 1, Appendix A).

- 4952 Stream Mitigation Units
 - Restoring approximately 3330 linear feet of stream channel through construction of stable channel at the historic floodplain elevation.
 - Enhancing (level I) approximately 1319 linear feet of stream channel through cessation of current land use practices, installing grade control structures, repairing bank erosion, restoring proper channel dimension and profile, and planting with native forest vegetation.
 - Enhancing (level II) approximately 1953 linear feet of stream channel through cessation of current land use practices, removing invasive species, and planting with native forest vegetation.
- 0.15 Riparian Wetland Mitigation Units
 - Enhancing approximately 0.3 acres of riparian wetland by filling ditches/abandoned channels and supplemental planting.
- Planting a native woody riparian buffer (at least 30 feet in width) adjacent to restored/enhanced streams and wetlands within the Site.
- Protecting the Site in perpetuity with a conservation easement.

Stream Success Criteria

Stream restoration success criteria for the Site are based on the *Stream Mitigation Guidelines* issued in April 2003 by the USACE and NCDWQ. Success criteria for stream restoration will include 1) documentation of two bankfull events, 2) little change in the channel cross-section from as-built conditions, 3) stable longitudinal profile, 4) substrate consistency, and 5) photographic evidence of stability.

Bankfull Events

Two bankfull flow events in separate years must be documented within the 5-year monitoring period. Otherwise, stream monitoring will continue until two bankfull events have been documented in separate years.

Cross-sections

Riffle cross-sections on the restoration and enhancement reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. Riffle cross-sections should generally fall within the parameters defined for channels of the appropriate Rosgen stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth.

Longitudinal Profile

Longitudinal profile data for the stream reach should show that bedform features are remaining stable. The riffles should be steeper and shallower than the pools, while the pools should be deep with flat water surface slopes. The relative percentage of riffles and pools should not change significantly from the design parameters.

Bed Material Analysis

Substrate materials in the restoration reaches should indicate a progression towards or the maintenance of coarser materials in the riffle features and smaller particles in the pool features.

Photo Reference Sites

Photographs will be used to evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures subjectively. Lateral photos should not indicate excessive erosion or continuing degradation of the banks. A series of photos over time should indicate successive maturation of riparian vegetation.

Vegetation Success Criteria

Success criteria have been established to verify that the vegetation component supports community elements necessary for forest development. Success criteria for this project includes an average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, and 260 planted stems per acre in year 5.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

Monitoring of the Site's restoration efforts will be performed until agreed upon success criteria are fulfilled. Monitoring is proposed for the stream channel, riparian vegetation, and hydrology for a period of five years (Figure 2, Appendix B). Monitoring reports of collected data will be submitted no later than December of each monitoring year.

2.1 Streams

Post-restoration monitoring will be conducted for five years following the completion of construction to evaluate the effectiveness of the restoration practices. Measurements were taken using a Topcon GTS 303 total station and Recon data collector. The raw total station file was processed using Carlson Survey Software into a Computer Aided Design (CAD) file. Coordinates were exported as a text/ASCII file to Microsoft Excel for processing and presentation of data, and are not georeferenced. Pebble counts were completed using the modified Wolman method (Rosgen 1993). Monitored stream parameters include stream dimension (cross-sections), pattern (longitudinal survey), profile (profile survey), and photographic documentation. Baseline stream data can be found in Appendix D.

Two areas of concern were noted along UT-1 during Year 3 (2016), and both remained relatively unchanged during Year 5 (2018). One area consists of a section of log sills constructed within a riffle near station 25+00. The riffle bed material surrounding the log structures has scoured resulting in pools through this section of stream. This issue was first identified during Year 3 (2016), and it continues to appear unstable; however, it has not worsened significantly in the past year which may indicate more stability than originally assumed. An additional area of concern includes a log vane structure along the right bank of UT-1, just downstream from cross-section 7. The footer log of the structure has failed and become partially dislodged, and the downstream end of the log appears to move freely with the flow of the stream. However, it has continued to maintain grade along the upstream riffle, and it appears to be in a similar state as it was originally observed. Thus, the structure may be more stable than was reported during Years 3 (2016) and 4 (2017). Stream areas of concern are depicted on Figure 2 and quantified in Table 5A (Appendix B).

Due to the observation of several beaver dams during Year 3 (2016) monitoring, NCDMS contracted APHIS to monitor and eliminate beaver activity on the Site. In September 2016, all dams were removed and several beaver were trapped. APHIS will continue to monitor the Site and eliminate any beaver activity as necessary. No beaver activity was observed during Year 5 (2018) monitoring.

Bankfull Events

The occurrence of bankfull events within the monitoring period will be documented by the use of a crest gauge and photographs. One crest gauge was installed to record the highest watermark between site visits, and the gauge will be checked each Site visit to determine if a bankfull event has occurred (Figure 2, Appendix B). Photographs will be used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits.

Three bankfull events were documented during monitoring year 5 (2018) for a total of 16 bankfull events during the five year monitoring period.

Cross-sections

A total of 14 permanent cross-sections, 10 riffle and 4 pool, were established and will be used to evaluate stream dimension; locations are depicted on Figure 2 (Appendix B) Because riffle cross-sections are critical in determining bankfull design parameters, the number of riffle cross-sections established will generally outnumber pool cross-sections. Each cross-section will be marked on both banks with permanent pins to establish the exact transect used. A common benchmark will be used for cross-sections and consistently used to facilitate easy comparison of year-to-year data. The annual cross-section survey will include points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross sections will be classified using the Rosgen Stream Classification System.

No additional indicators of instability were observed during year 5 (2018) monitoring; therefore, stream dimension measurements are currently meeting success criteria.

Longitudinal Profile

After Site construction, approximately 4640 linear feet of longitudinal profile was completed to document baseline conditions. Longitudinal profile will be resurveyed annually for the duration of the five-year monitoring period. Measurements include thalweg, water surface, bankfull, and top of low bank. Each of these measurements will be taken at the head of each channel unit (e.g., riffle, pool) and at the maximum pool depth. The survey will be tied to a permanent benchmark.

Minimal indicators of bedform instability were observed during year 5 (2018) monitoring; therefore, stream longitudinal profile measurements are currently meeting success criteria.

Bed Material Analysis

Pebble counts will be conducted annually on one permanent riffle cross-section (100-counts) at the time cross-section and longitudinal surveys are performed during the five year monitoring period. These samples will reveal changes in sediment gradation over time as the stream adjusts to upstream sediment loads.

Year 5 (2018) pebble counts indicate the maintenance of coarser materials in the measured riffle feature; therefore, bed material is currently meeting success criteria.

Photo Reference Sites

A total of 24 photographs will be used to visually document restoration success for at least five years following construction. Photographs will be taken from a height of approximately five to six feet. Photo locations will be recorded using sub-meter GPS to ensure that the same locations (and view directions) on the Site are monitored in each monitoring period.

Year 5 (2018) photo reference sites show no channel aggradation or degradation, or bank erosion. In addition, photo reference sites show successive maturation of riparian vegetation; therefore the photo reference sites show that Site meeting success criteria.

2.2 Vegetation

After planting was completed, an initial evaluation was performed to verify planting methods were successful and to determine initial species composition and density. Eleven sample vegetation plots (10-meter by 10-meter) were installed and measured within the Site as per guidelines established in *CVS-DMS Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). Vegetation plots are permanently monumented with 6-foot metal t-posts at each corner. In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. Vegetation plot information can be found in Appendix C.

Year 5 (2018) stem count measurements indicate an average of 349 planted stems per acre (excluding livestakes) across the Site; therefore, the Site is currently meeting vegetation success criteria. Eight of the eleven individual vegetation plots met success criteria based on planted stems alone; Plots 4 and 7 were one stem shy of success criteria. When including naturally recruited stems of northern red oak (*Quercus rubra*) both Plots 4 and 7 were above success criteria.

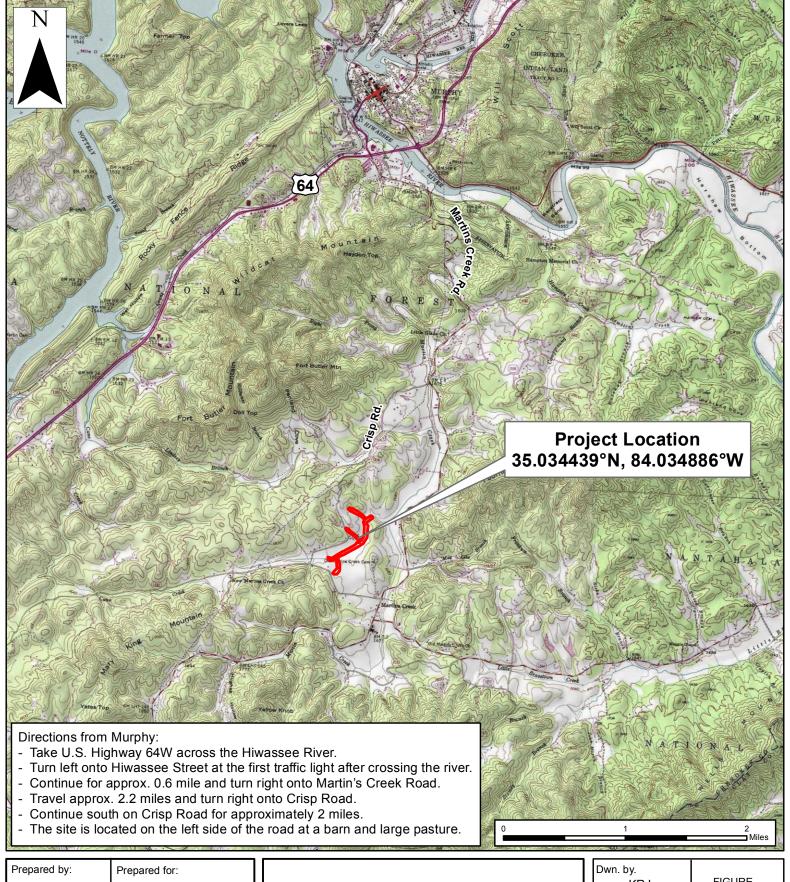
Stems from the 2015 supplemental planting remain vigorous during year 5 (2018). Two particularly dense patches of multiflora rose (*Rosa multiflora*) were first observed along the right bank of UT1-3 during Year 3 (2016) monitoring, and those remained during Year 5 (2018). The populations cover approximately 0.21 acres and are depicted on Figure 2 (Appendix B). Numerous additional populations of multiflora rose as well as several small patches of Chinese privet (*Ligustrum sinense*) and Japanese honeysuckle (*Lonicera*

japonica) were observed scattered throughout the site during year 5 (2018), but all were in quantities below mapping threshold. NCDMS will continue invasive species treatment in 2019.

The easement fencing at the downstream crossing of UT1 has been damaged by wrack and water during bankfull events, and the gate on the right bank of the crossing is damaged and is no longer able to prevent livestock access to the crossing. Additionally, easement fencing along the entire boundary, especially along the right bank of UT1-3, are becoming susceptible to damage from lack of maintenance. There was no evidence of livestock access to the easement observed during year 5 (2018).

On May 1-2, 2018, a wetland delineation was performed by Axiom as part of the wetland confirmation services in the monitoring contract with NCDMS. This delineation was performed in accordance with the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (USACE, 2012) and has not been approved in the field by a USACE representative. The results of the delineation show a net increase in wetlands across the site from the wetlands originally proposed as mitigation assets (Table 1, Appendix A). NCDMS is not seeking additional wetland credit for the site. Appendix F contains a figure depicting the 2018 wetland delineation as well as the accompanying wetland data forms.

3.0 REFERENCES


- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-DMS Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environmental Quality, Division of Mitigation Sevices. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2012. Final North Carolina Water Quality Assessment and Impaired Waters List (NC 2012 Integrated Report Category 5, 303(d) List) (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=9d45b3b4-d066-4619-82e6-ea8ea0e01930&groupId=38364 [February 17, 2014]. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2014. Draft 2014 NC 303(d) List-Category 5 Assessments Requiring TMDLs (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=096fb2ff-296b-4bd8-8b88-e83bb5984be6&groupId=38364 [February 17, 2014]. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Mitigation Services and Equinox Environmental Consultation and Design (NCDMS). 2007. Peachtree-Martins Creek Local Watershed Plan (Phase3), Hiwassee River Basin, Cherokee and Clay Counties, North Carolina. October 2007 Watershed Management Plan. [Online WWW]. Available URL: http://www.hrwc.net/pmcplan/pmc plan executive summary.pdf.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Annual Monitoring and Closeout Reporting Format, Data Requirements, and Content Guidance, dated February 2014. NC Department of Environmental Quality. Available online at http://portal.ncdenr.org/c/document_library/get_file?p_l_id=60409&folderId=18877169&name=D_LFE-86604.pdf
- North Carolina Division of Mitigation Services (NCDMS). 2010. UT to Martin's Creek (Contreras) Mitigation Plan. NC Department of Environmental Quality. Available online at http://its.enr.state.nc.us/WebLink8/0/doc/135204/Page3.aspx

- North Carolina Division of Mitigation Services (NCDMS). 2008. Hiwassee River Basin Restoration Priorities 2008 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=ea2df99d-3031-4c7b-87ea-79d56a3e4a1e&groupId=60329. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- Rosgen. 1993. Applied Fluvial Geomorphology, Training Manual. River Short Course, Wildland Hydrology, Pagosa Springs, CO.
- United States Army Corps of Engineers (USACE). 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). Wetland Regulatory Assistance Program. U.S. Army Engineer Research and Development Center. Vicksburg, MS.
- United States Army Corps of Engineers, United States Environmental Protection Agency, North Carolina Wildlife Resources Commission, North Carolina Division of Water Quality (USACE et al.). 2003. Stream Mitigation Guidelines.
- United States Geological Survey (USGS). 1974. Hydrologic Unit Map 1974. State of North Carolina.
- Weakley, Alan S. 2012. Flora of the Southern and Mid-Atlantic States. Available online at: http://www.herbarium.unc.edu/WeakleysFlora.pdf [September 28, 2012]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

- Figure 1. Vicinity Map
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Axiom Environmental, Inc.

NC Department of Environmental Quality

Division of Mitigation Services

VICINITY MAP
UT TO MARTINS CREEK (CONTRERAS)
DMS PROJECT NUMBER 92766
Cherokee County, North Carolina

Dwn. by. KRJ	FIGURE
Date: Nov. 2015	1
Project: 12.004.16	

Table 1. Project Components and Mitigation Credits UT to Martin's Creek (Contreras) Mitigation Site

			Mi	tigation Credit Sumr	nations		
Stı	ream		R	iparian Wetland			Nonriparian Wetland
4	952			0.15			
				Project Componen	its		
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits	Comment
UT1-1 Station 00+00 to 06+02	602		Enhance I	602-54 = 548	1.5:1	365.3	Forded Crossing (54 linear feet) removed from credit
UT1-1	346		Enhance II	346	2.5:1	138.4	
UT1-1-1	106		Enhance II	106	2.5:1	42.4	
UT1-2 Station 00+00 to 02+07	141	PI	Restoration	207	1:1	207	
UT1-3	767			767-62=705	1.5:1	470	Stream under power line easement (66 linear feet)
Station 00+00 to 08+33	66		Enhance I	66	3:1*	22.0	will generate half credit and piped stream crossing (62 linear feet) removed from credit.
	1099			1014-53=961	2.5:1	384.4	Stream under two power line easements (40 and
UT1-4	40		Enhance II	40	5:1**	8	45 linear feet) will generate half credit and forded
	45			45	5:1**	9	crossing (53 linear feet) removed from credit.
UT 1 to Martin's Creek	455		Enhance II	455	2.5:1	182	
UT1 to Martin's Creek Station 00+00 to 32+74	2674	PI	Restoration	3274-53-47-51 = 3123	1:1	3123	Three crossings (53, 47, and 51 linear feet) removed from credit.
Wetland Enhancement	0.3		Enhancement	0.3	2:1	0.15	Enhancement of existing riparian wetlands characterized by removal of invasive species and supplemental planting.
				Component Summa	tion		
Restoration Level	Stream	(linear foota	ge)	Riparian Wetland	(acreage)		Nonriparian Wetland (acreage)
Restoration		3330					
Enhancement (Level 1)		1319					
Enhancement (Level II)		1953					
Enhancement				0.3			
	Totals 6602			0.3			<u></u>
Mitigation Units		52 SMUs		0.15 Riparian V			0.00 Nonriparian WMUs

^{*66} linear feet of stream under the power line easement is receiving a mitigation ratio of 3:1 (half credit for enhancement [level I]).

^{**85} linear feet of stream under two power line easements is receiving a mitigation ratio of 5:1 (half credit for enhancement [level II]).

Table 2. Project Activity and Reporting History UT to Martin's Creek (Contreras) Mitigation Site

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Mitigation Plan	September 2009- March 2010	March 2010
Final Design – Construction Plans	March 2010- November 2010	November 2010
Construction		October 2012-July 2013
Temporary S&E Mix applied to Entire Project Site		October 2012-July 2013
Permanent Seed Mix applied to the Entire Project Site		October 2012-July 2013
Bare Root; Containerized; and B&B Plantings for the Entire Project Site		March 2014
Mitigation Plan/ As-Built (Year 0 Monitoring Baseline)	April 2014	April 2014
Invasive Species Treatment		July 2014
Year 1 Monitoring	October 2014	November 2014
Warranty Supplemental Planting		March 2015
Invasive Species Treatment		July 2015
Beaver/Dam Removal		September 2015
Year 2 Monitoring	November 2015	December 2015
Beaver/Dam Removal		September 2016
Year 3 Monitoring	November 2016	December 2016
Year 4 Monitoring	November 2017	December 2017
Year 5 Monitoring	November 2018	November 2018
Year 5 Vegetation Monitoring	September 25, 2018	
Year 5 Stream Monitoring	April 1, 2018	

Table 3. Project Contacts Table Martin's Creek II Mitigation Site

What the S Creek II Whitigation Site							
Designer	Michael Baker Engineering, Inc.						
	797 Haywood Road, Suite 201						
	Asheville, NC 28806						
	Micky Clemmons 828-350-1408						
Construction Plans and Sediment and	Michael Baker Engineering, Inc.						
Erosion Control Plans	797 Haywood Road, Suite 201						
	Asheville, NC 28806						
	Micky Clemmons 828-350-1408						
Construction Contractor	River Works, Inc.						
	6105 Chapel Hill Rd.						
	Raleigh, NC 27607						
	919-582-3574						
Planting Contractor	Carolina Silvics, Inc.						
	908 Indian Trail Road						
	Edenton, NC 27932						
	(252) 482-8491						
As-built Surveyor	Turner Land Surveying. PLLC						
	3201 Glenridge Drive						
	Raleigh, NC 27604						
	919-875-1378						
Baseline Data Collection	Axiom Environmental, Inc.						
	218 Snow Avenue						
	Raleigh, NC 27603						
	Grant Lewis 919-215-1693						

Table 4. Project Attribute Table UT to Martin's Creek (Contreras) Mitigation Site

UT to Martin's Creek (Contrera	15) 11110	igation									
Project County			C	herokee C			olina				
Physiographic Region					Blue Ridg						
Ecoregion					road Bas						
Project River Basin					Hiwasse						
USGS HUC for Project (14 digit)		06020002170010									
NCDWQ Sub-basin for Project					04-05-02						
Planning Area			Yes	s – Peachti		ns Cree	k LWP				
WRC Class (Warm, Cool, Cold)					Cold						
% of easement fenced/demarcated			10	00% fence	d to excl	ude live	stock				
Beaver activity observed during			Yes on	UT1 belov	v lower l	imits of	project	area			
design phase?	Yes, on UT1 below lower limits of project area										
		Restoration Component Attribute Table									
	UT	1-1	UT 1-1-1	UT 1-2	UT	1-3	U	Γ 1-4	UT: Marti		
Drainage Area	.018	.028	.004	.005	.074	.082	.(023	.79	.82	
Stream Order (USGS topo)	1 st	2 nd	1 st	1 st	1 st	1 st	2	2 nd	$3^{\rm rd}$	3rd	
Restored Length (feet)	346	548	106	207		738		1099	3123		
Perennial or Intermittent	I	P	I	I	I	P	I	P	P	P	
Watershed Type		Rural									
Watershed impervious cover	<10%										
NCDWQ AU/Index number					1-49						
NCDWQ Classification	(C	С	С	C	,		C		7	
303d listed?					No						
Upstream of a 303d listed					No						
Reasons for 303d listed segment					NA						
Total acreage of easement					15.63						
Total existing vegetated acreage of											
easement											
Total planted restoration acreage					~15.63						
Rosgen Classification of	B/F	E/Eb	Е	F	G/C	'/B		В	G/Eł	n/Ch	
preexisting											
Rosgen Classification of As-built		В		C	В			В	(
Valley type		I	II	II	II			II	I		
Valley slope	.0	34		.010	.02	29			.00)9	
Cowardin classification of proposed	N	/A	N/A	N/A	N/.	A	N	J/A	N/	A	
Trout waters designation			•	-	No						
Species of concern, endangered					No						
etc.					110						
Dominant Soil Series	Brass Com Thur Dil Compl	luska stown plex/ mont- lard lex/Arc loam	Junaluska Brasstown Complex	Arc qua loam	Thurn Dill: Comj	ard	T	aluska Sali mplex	Arc qu	a loam	

APPENDIX B

VISUAL ASSESSMENT DATA

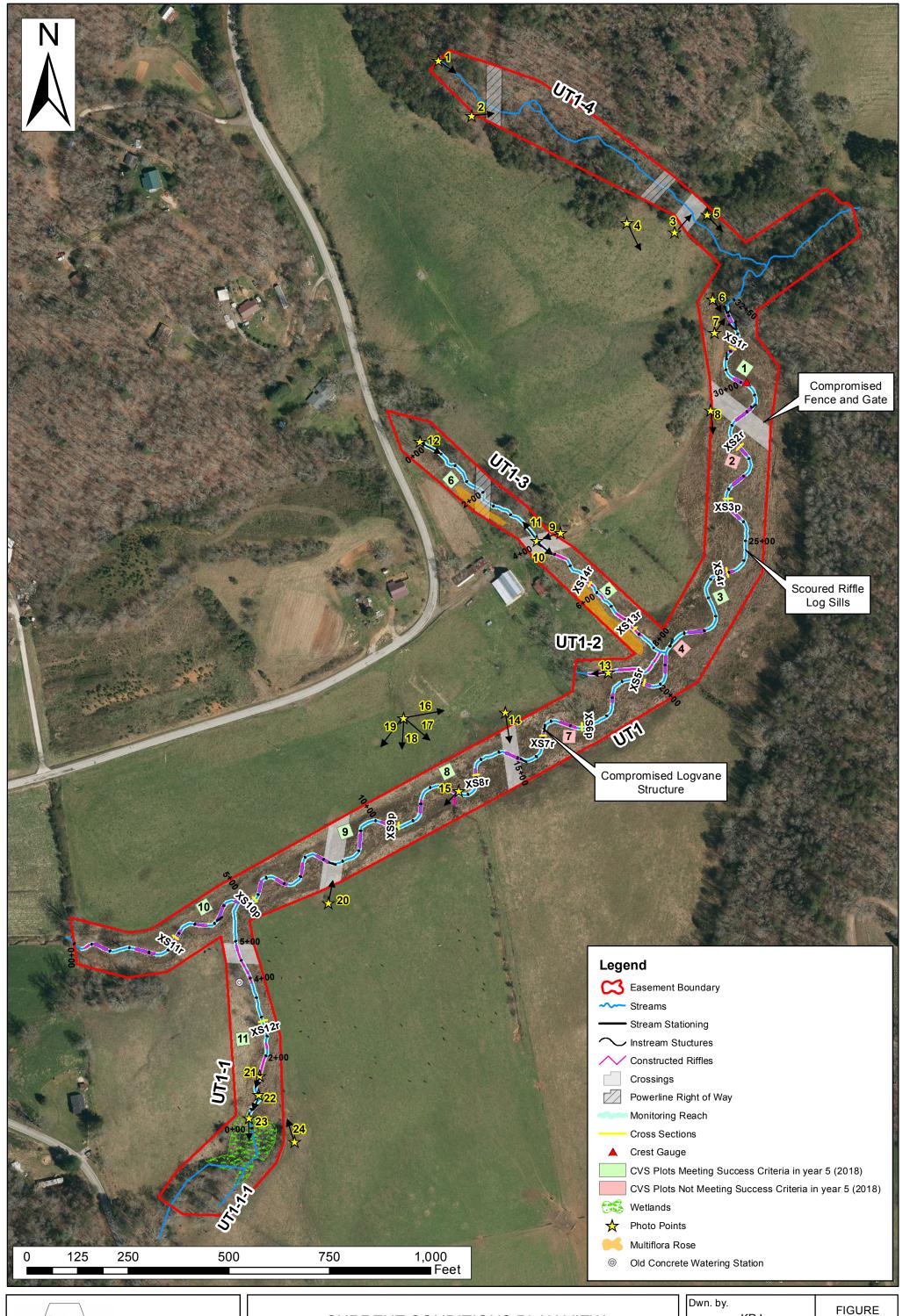

Vegetation Plot Photographs

Figure 2. Current Conditions Plan View (CCPV)

Tables 5A-5D. Visual Stream Morphology Stability Assessment

Table 6. Vegetation Condition Assessment

Stream Station Photographs

CURRENT CONDITIONS PLAN VIEW UT TO MARTINS CREEK (CONTRERAS) DMS PROJECT # 92766 Cherokee County, North Carolina

Dwn. by. KRJ	FIGU
Date:	
Nov 2018	
Project:	
12-004.16	

Table 5A <u>Visual Stream Morphology Stability Assessment</u>

Reach ID UT1 Assessed Length 3123

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			1	100	97%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	38	39			97%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	40	40			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	40	40			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	40	40			100%			
		Thalweg centering at downstream of meander (Glide)	40	40			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	11	12			92%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	12	12			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	11	12			92%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	11	12			92%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	12	12			100%			

<u>Visual Stream Morphology Stability Assessment</u> UT1-1 Table 5B

Reach ID Assessed Length 602

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	14	14			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	17	17			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	17	17			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	17	17			100%			
		Thalweg centering at downstream of meander (Glide)	17	17			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	13	13			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	13	13			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	13	13			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	13	13			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	13	13			100%			

<u>Visual Stream Morphology Stability Assessment</u> UT1-2 Table 5C

Reach ID Assessed Length 207

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	6	6			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	5	5			100%	1		
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	5	5			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	5	5			100%	1		
		Thalweg centering at downstream of meander (Glide)	5	5			100%			
								•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

<u>Visual Stream Morphology Stability Assessment</u> UT1-3 Table 5D

Reach ID Assessed Length 803

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	23	23			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	24	24			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	24	24			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	24	24			100%			
		2. Thalweg centering at downstream of meander (Glide)	24	24			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	9	9			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	9			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	9	9			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	9	9			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	9	9			100%			

Table 6

Vegetation Condition Assessment

UT to Martins Creek (Contreras) Mitigation Project

Planted Acreage¹

15.63

			_				
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage	
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%	
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%	
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%	
			Total	0	0.00	0.0%	
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	N/A	0	0.00	0.0%	
	Cumulative Tot						

Easement Acreage²

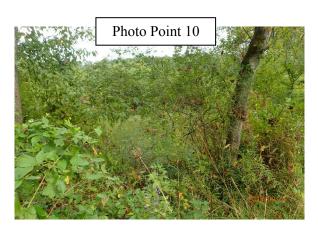
15.63

Eddomont /torodgo						
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Multiflora rose	1000 SF	Orange polygon	2	0.21	1.3%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the projects history will warrant control, but potentially large coverages, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolizing invasives polygons, particulally for situations where the condition fo

UT to Martin's Creek (Contreras) Fixed Station Photographs Taken April/May/September/November 2018


UT to Martin's Creek (Contreras) Final DMS Project Number 92766 Cherokee County, North Carolina


Axiom Environmental, Inc.

UT to Martin's Creek (Contreras) Fixed Station Photographs (continued) Taken April/May/September/November 2018

UT to Martin's Creek (Contreras) Fixed Station Photographs (continued) Taken April/May/September/November 2018

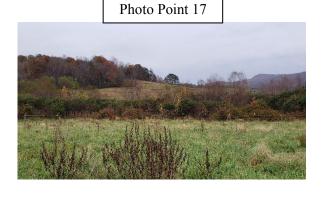


Photo Point 16

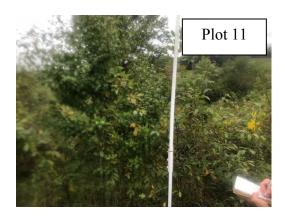
UT to Martin's Creek (Contreras) Fixed Station Photographs (continued) Taken April/May/September/November 2018

Photo Point 19

Photo Point 20

Photo Point 24

UT to Martin's Creek (Contreras) Vegetation Monitoring Photographs Taken September 2018


UT to Martin's Creek (Contreras) Vegetation Monitoring Photographs Taken September 2018 (continued)

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

 Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

UT to Martin's Creek (Contreras) Mitigation Site (DMS Project Number 92766)

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	No	
3	Yes	
4	No	
5	Yes	
6	Yes	73%
7	No	
8	Yes	
9	Yes	
10	Yes	
11	Yes	

Table 8. CVS Vegetation Plot Metadata

UT to Martin's Creek (Contreras) Mitigation Site (DMS Project Number 92766)

· ·	rasj Miligaton Site (DMS 110ject Number 32700)
Report Prepared By	Corri Faquin
Date Prepared	9/1/2018 13:23
database name	Axiom-UTMartinsContreras-2018-A-v2.3.1.mdb
	S:\Business\Projects\12\12-004 EEP Monitoring\12-004.16 UT to Martins and Martins\UT to Martins
database location	(Contreras)\2018\CVS
computer name	PHILLIP-PC
file size	50331648
DESCRIPTION OF WORKSHE	CETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	92766
project Name	UT to Martin's Creek (Contreras)
Description	Stream Restoration
River Basin	Hiwassee
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	11

Table 9. Total and Planted Stems by Plot and Species
DMS Project Code 92766. Project Name: UT to Martin's Creek (Contreras)

			Current Plot Data (MY5 2018)																										
			92766-01-0		0001	927	92766-01-0002		92766-01-00		0003	92766-01-0004		92766-01-0005			92766-01-0006			92766-01-0007			92766-01-0008			92766-01-0009			
Scientific Name	Common Name	n Name Species Type PnoLS P-all T Pn		P-all	Т	PnoLS	P-all	Т	PnoLS P-all T			PnoLS P-all T			Γ PnoLS P-all		Т												
Acer negundo	boxelder	Tree																											
Acer rubrum	red maple	Tree									3																		3
Alnus serrulata	hazel alder	Shrub			9			5			5												51			13			8
Amelanchier arborea	common serviceberry	Tree																									2	2	2
Betula nigra	river birch	Tree	1	. 1	1													1	. 1	1			1						
Carpinus caroliniana	American hornbeam	Tree													4	4	4										1	1	1
Carya	hickory	Tree																											
Carya alba	mockernut hickory	Tree	1	. 1	1				1	1	1																		
Carya glabra	pignut hickory	Tree																											
Cornus amomum	silky dogwood	Shrub				1	1	1				1	. 1	. 1		1	1												
Cornus florida	flowering dogwood	Tree																											
Diospyros virginiana	common persimmon	Tree																											
Juglans nigra	black walnut	Tree																		3									
Liquidambar styraciflua	sweetgum	Tree																											
Liriodendron tulipifera	tuliptree	Tree													7	7	7	2	. 2	2	. 1	. 1	. 1	1	1	1			
Nyssa	tupelo	Tree																											
Nyssa sylvatica	blackgum	Tree																			1	. 1	. 1	2	2	2			
Platanus occidentalis	American sycamore	Tree	3	3	4	2	2	2	4	4	4	. 2	. 2	. 2	1	1	1	. 1	. 1	1	. 2	. 2	. 2				1	1	1
Prunus serotina	black cherry	Tree																											
Prunus serrulata	Japanese flowering ch	erry																											
Pyrus calleryana	Callery pear	Exotic																											
Quercus	oak	Tree																						1	1	1			
Quercus coccinea	scarlet oak	Tree	1	. 1	1				1	1	1																1	1	1
Quercus nigra	water oak	Tree																											
Quercus pagoda	cherrybark oak	Tree										2	. 2	. 2							1	. 1	. 1	1	1	1			
Quercus rubra	northern red oak	Tree	2	. 2	2	2	2	2	2	2	2	1	. 1	. 2	1	1	1	. 4	4	4	. 1	. 1	. 2	3	3	3	2	2	2
Quercus shumardii	Shumard's oak	Tree							1	1	1							1	. 1	1				1	1	1			
Salix nigra	black willow	Tree																								1			
Unknown		Shrub or Tree																											
		Stem count	8	8	18	5	5	10	9	9	17	6	6	7	13	14	14	. 9	9	12	. 6	6	59	9	9	23	7	7	18
		size (ares)		1			1			1			1		1			1			1			1			1		
		size (ACRES)		0.02			0.02		0.02			0.02			0.02			0.02			0.02			0.02			0.02		
		Species count		5	6	3	3	4	5	5	7	4	4	4	4	5	5	5	5	6	5	5	7	6	6	8	5	5	7
		Stems per ACRE		323.7	728.4	202.3	202.3	404.7	364.2	364.2	688	242.8	242.8	283.3	526.1	566.6	566.6	364.2	364.2	485.6	242.8	242.8	2388	364.2	364.2	930.8	283.3	283.3	728.4
Color for Density		Pnol S = Planted					•				•			•			•			•		•	•		•			•	

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Table 9. Total and Planted Stems by Plot and Species (Continued)

DMS Project Code 92766. Project Name: UT to Martin's Creek (Contreras)

				Current	′5 2018	3)																				
			92766-01-0010			92766-01-0011			MY5 (2018)			MY4 (2017)			MY3 (2016)			M	IY2 (20:	L 5)	N	1Y1 (201	.4)	MY0 (2014)		
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P-all T		Т	PnoLS P-all T			PnoLS P-all T		Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree						1			1			1			1			1			1			
Acer rubrum	red maple	Tree						5			11			1			7									
Alnus serrulata	hazel alder	Shrub			14						105			158			119			112			81			1
Amelanchier arborea	common serviceberry	Tree							2	2	2	2	2	2	2	2	2	. 2	2	2	2	2	2	3	3	3
Betula nigra	river birch	Tree	2	2	2				4	4	5	5	5	5	6	6	7	13	13	13	12	12	12	19	19	19
Carpinus caroliniana	American hornbeam	Tree							5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5	5	5	- 5
Carya	hickory	Tree													2	2	3	2	2	2	3	3	3	2	2	. 2
Carya alba	mockernut hickory	Tree							2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	5	5	5
Carya glabra	pignut hickory	Tree				3	3	3	3	3	3	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5
Cornus amomum	silky dogwood	Shrub							2	3	3	2	3	3	1	2	2	1	2	2	1	. 2	4		1	. 2
Cornus florida	flowering dogwood	Tree						4			4			4			2			4						
Diospyros virginiana	common persimmon	Tree																		1				1	1	. 1
Juglans nigra	black walnut	Tree									3						2			6			3			
Liquidambar styraciflua	sweetgum	Tree												2												
Liriodendron tulipifera	tuliptree	Tree	1	1	1	1	1	3	13	13	15	14	14	15	15	15	19	17	17	18	9	9	9	7	7	7
Nyssa	tupelo	Tree				1	1	1	1	1	1	1	1	1	1	1	1	-								
Nyssa sylvatica	blackgum	Tree							3	3	3	3	3	3	2	2	2	. 2	2	2						
Platanus occidentalis	American sycamore	Tree	3	3	3	1	1	1	20	20	21	22	22	22	21	21	23	20	20	20	8	8	8	10	10	10
Prunus serotina	black cherry	Tree			3						3			11			9			14			5			
Prunus serrulata	Japanese flowering che	erry						3			3															
Pyrus calleryana	Callery pear	Exotic												3												
Quercus	oak	Tree							1	1	1	1	1	1	5	5	5	14	14	14	16	16	16	49	49	49
Quercus coccinea	scarlet oak	Tree	1	1	1				4	4	4	3	3	3	4	4	4	. 2	2	2	2	. 2	2			
Quercus nigra	water oak	Tree										1	1	1	1	1	1	. 2	2	2	1	. 1	1	1	1	. 1
Quercus pagoda	cherrybark oak	Tree	2	2	2	2	2	. 2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	5	5	5
Quercus rubra	northern red oak	Tree	2	2	2	4	4	. 4	24	24	26	27	27	27	28	28	28	30	30	30	23	23	23	1	1	. 1
Quercus shumardii	Shumard's oak	Tree							3	3	3	3	3	3	5	5	5	3	3	3						
Salix nigra	black willow	Tree									1						1									1
Unknown		Shrub or Tree																1	1	1	1	. 1	1			6
		Stem count	11	11	28	12	12	27	95	96	233	103	104	285	113	114	263	130	131	270	99	100	192	113	114	123
l		size (ares)		1		1				11		11			11			11			11			11		
		size (ACRES)		0.02		0.02		0.27		0.27			0.27			0.27			0.27			0.27				
		Species count			8	6	6	10	15	15	23	16	16	23	17	17	24	17	17	23	15	15	19	13	14	17
	<u> </u>	Stems per ACRE	445.2	445.2	1133	485.6	485.6	1093	349.5	353.2	857.2	378.9	382.6	1049	415.7	419.4	967.6	478.3	481.9	993.3	364.2	367.9	706.4	415.7	419.4	452.5

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

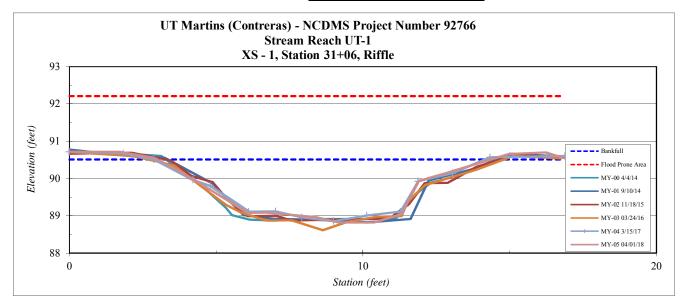
T includes natural recruits

APPENDIX D STREAM SURVEY DATA

Cross-section Plots
Longitudinal Profile Plots
Substrate Plots

Tables 10a-f. Baseline Stream Data Summary

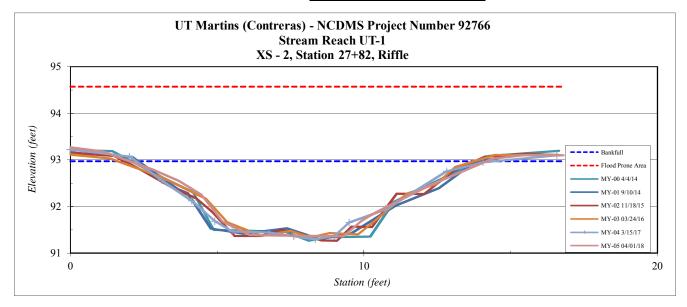
Tables 11a-f. Monitoring Data


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 1, Riffle
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	90.72
1.72	90.72
2.89	90.56
3.80	90.18
5.41	89.40
6.07	89.08
6.68	89.08
7.54	89.03
8.39	88.97
9.18	88.82
10.37	88.82
11.32	89.04
11.91	89.94
12.82	90.14
14.96	90.66
16.2	90.70
16.8	90.55

SUMMARY DATA	
Bankfull Elevation:	90.5
Bankfull Cross-Sectional Area:	11.6
Bankfull Width:	11.4
Flood Prone Area Elevation:	92.2
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	1.0
W/D Ratio:	11.2
Entrenchment Ratio:	8.8
Bank Height Ratio:	1.0

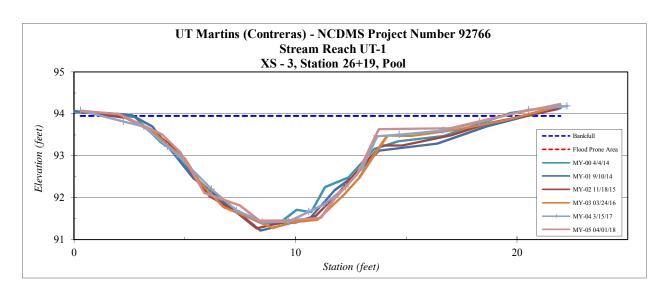
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 2, Riffle
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	93.27
1.10	93.18
1.75	93.03
2.79	92.80
3.70	92.55
4.46	92.25
5.18	91.68
6.11	91.39
7.24	91.38
8.46	91.37
9.30	91.36
9.89	91.67
10.15	91.79
11.03	92.07
12.29	92.47
14.4	93.02
15.5	93.10
16.8	93.10

SUMMARY DATA	
Bankfull Elevation:	93.0
Bankfull Cross-Sectional Area:	11.4
Bankfull Width:	12.2
Flood Prone Area Elevation:	94.6
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.9
W / D Ratio:	13.1
Entrenchment Ratio:	8.2
Bank Height Ratio:	1.0

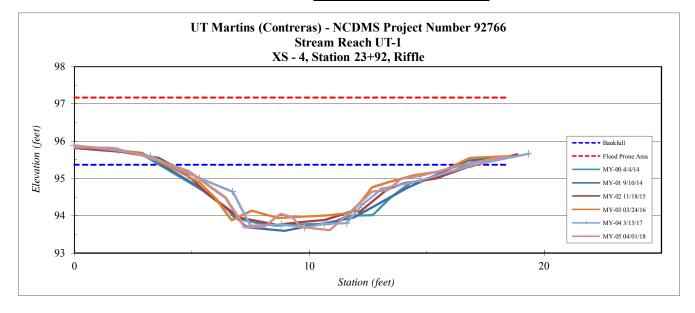
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 3, Pool
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Elevation
94.1
94.0
93.5
93.1
92.1
91.8
91.4
91.5
91.5
92.0
92.6
93.6
93.7
93.9
94.2

SUMMARY DATA	
Bankfull Elevation:	94.0
Bankfull Cross-Sectional Area:	19.7
Bankfull Width:	17.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.5
Mean Depth at Bankfull:	1.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

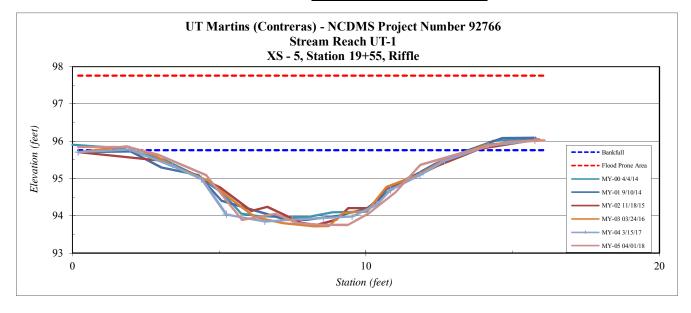
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 4, Riffle
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	95.84
1.68	95.82
2.91	95.61
4.83	95.21
6.44	94.49
7.25	93.69
8.07	93.70
8.78	94.06
9.28	93.97
9.63	93.70
10.88	93.62
11.86	94.17
12.68	94.65
13.34	94.69
13.91	94.99
14.7	95.08
16.8	95.41
18.4	95.60

SUMMARY DATA	
Bankfull Elevation:	95.4
Bankfull Cross-Sectional Area:	11.3
Bankfull Width:	12.5
Flood Prone Area Elevation:	97.2
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	0.9
W / D Ratio:	13.8
Entrenchment Ratio:	8.0
Bank Height Ratio:	1.0

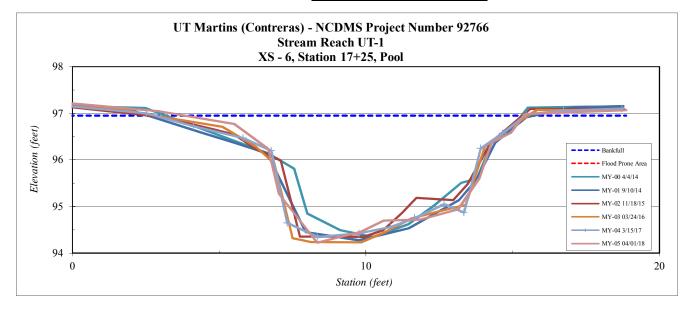
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 5, Riffle
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.20	95.85
1.90	95.84
2.89	95.65
4.56	95.09
5.78	93.89
6.91	94.05
7.69	93.80
8.46	93.76
9.39	93.76
10.09	94.06
11.00	94.63
11.85	95.36
13.33	95.70
14.81	95.98
16.08	96.02

SUMMARY DATA	
Bankfull Elevation:	95.8
Bankfull Cross-Sectional Area:	12.6
Bankfull Width:	11.3
Flood Prone Area Elevation:	97.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	2.0
Mean Depth at Bankfull:	1.1
W / D Ratio:	10.1
Entrenchment Ratio:	4.4
Bank Height Ratio:	1.0

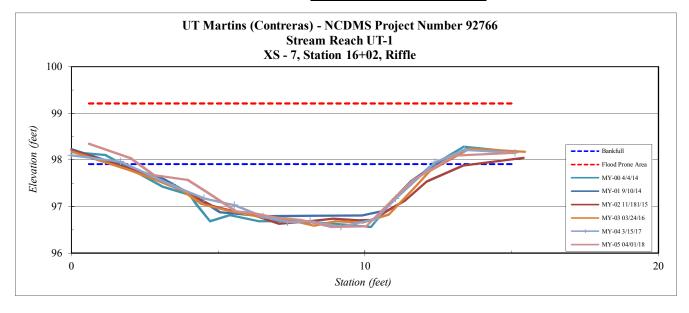
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 6, Pool
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.10	97.21
2.92	97.05
5.51	96.77
6.65	96.24
6.68	96.23
7.04	95.27
8.34	94.23
9.82	94.46
10.61	94.70
11.85	94.72
13.14	94.94
13.86	95.61
14.28	96.37
14.95	96.58
15.42	96.98
18.87	97.07

SUMMARY DATA	
Bankfull Elevation:	97.0
Bankfull Cross-Sectional Area:	17.2
Bankfull Width:	11.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.7
Mean Depth at Bankfull:	1.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

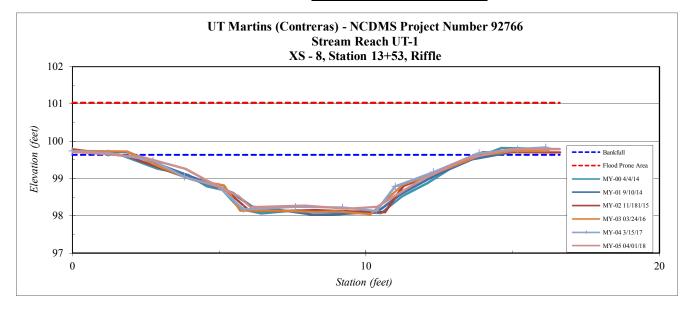
Stream Type E	Stream Type	Е
---------------	-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 7, Riffle
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.60	98.34
2.02	98.04
2.82	97.67
3.97	97.57
4.69	97.28
5.61	96.89
6.21	96.86
7.00	96.76
7.83	96.71
8.81	96.57
10.05	96.58
11.05	97.21
11.63	97.56
13.05	98.09
15.13	98.15

SUMMARY DATA	
Bankfull Elevation:	97.9
Bankfull Cross-Sectional Area:	8.4
Bankfull Width:	10.3
Flood Prone Area Elevation:	99.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	12.6
Entrenchment Ratio:	4.9
Bank Height Ratio:	1.1

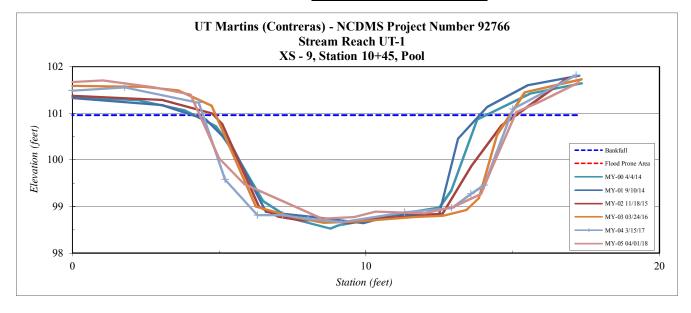
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 8, Riffle
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	99.72
2.33	99.59
3.85	99.26
4.57	98.96
5.68	98.51
6.07	98.23
7.91	98.28
9.36	98.19
10.38	98.24
11.84	98.95
13.39	99.53
14.89	99.79
16.60	99.79
	1

SUMMARY DATA	
Bankfull Elevation:	99.6
Bankfull Cross-Sectional Area:	10.4
Bankfull Width:	12.5
Flood Prone Area Elevation:	101.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.8
W / D Ratio:	15.0
Entrenchment Ratio:	4.0
Bank Height Ratio:	1.0

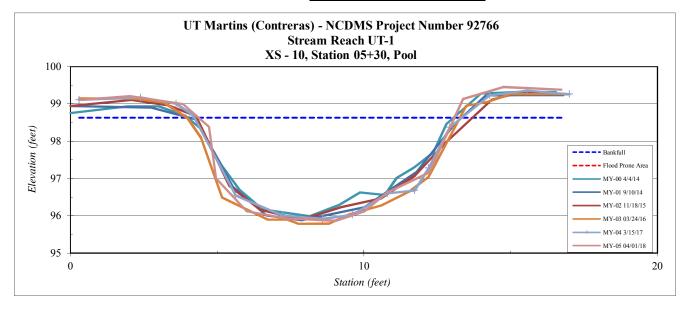
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 9, Pool
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Elevation
101.65
101.70
101.56
101.40
100.04
99.48
99.09
98.74
98.77
98.89
98.85
99.00
99.27
99.88
101.02
101.24
101.67

SUMMARY DATA	•
Bankfull Elevation:	101.0
Bankfull Cross-Sectional Area:	18.4
Bankfull Width:	10.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	1.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.05

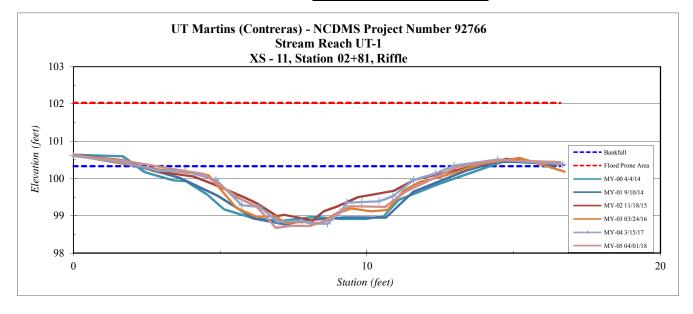
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 10, Pool
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.30	99.11
2.03	99.21
3.84	99.00
4.72	98.38
4.96	97.01
6.00	96.12
7.35	95.93
9.02	95.87
10.02	96.12
10.80	96.62
12.22	97.16
13.38	99.13
14.74	99.45
16.73	99.38

SUMMARY DATA	
Bankfull Elevation:	98.6
Bankfull Cross-Sectional Area:	18.0
Bankfull Width:	8.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.8
Mean Depth at Bankfull:	2.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

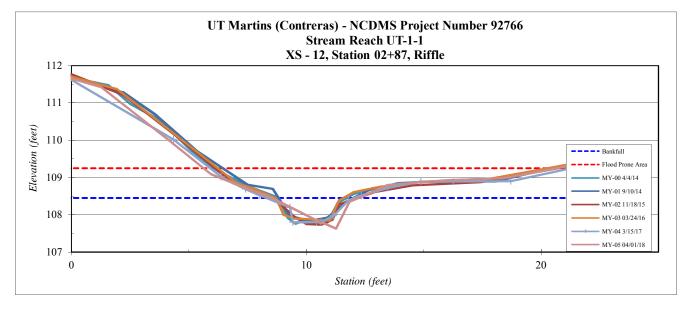
Stream Type E	Stream Type	Е
---------------	-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 11, Riffle
Reach	UT 1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	100.62
1.87	100.46
3.80	100.20
4.42	100.13
5.62	99.48
6.23	99.25
6.90	98.68
7.44	98.73
8.02	98.73
8.63	98.87
9.03	99.08
9.41	99.26
9.90	99.25
10.63	99.24
11.33	99.65
12.4	100.05
13.0	100.30
14.4	100.49
16.6	100.44
	-
	-

SUMMARY DATA	
Bankfull Elevation:	100.3
Bankfull Cross-Sectional Area:	8.6
Bankfull Width:	10.4
Flood Prone Area Elevation:	102.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	0.8
W / D Ratio:	12.6
Entrenchment Ratio:	4.8
Bank Height Ratio:	1.0

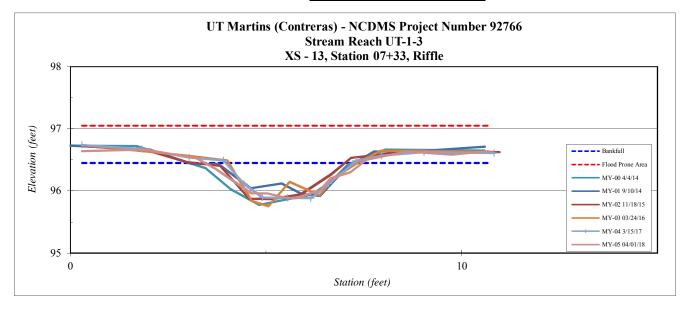
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 12, Riffle
Reach	UT 1-1
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.25	111.70
1.27	111.42
4.13	110.01
5.94	109.09
7.73	108.63
8.46	108.48
10.42	107.86
10.59	107.78
10.70	107.78
11.27	107.63
11.85	108.35
12.57	108.54
13.46	108.80
15.95	108.93
18.40	108.98
21.9	109.39

SUMMARY DATA	
Bankfull Elevation:	108.5
Bankfull Cross-Sectional Area:	1.4
Bankfull Width:	3.7
Flood Prone Area Elevation:	109.3
Flood Prone Width:	15.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	9.8
Entrenchment Ratio:	4.1
Bank Height Ratio:	1.0

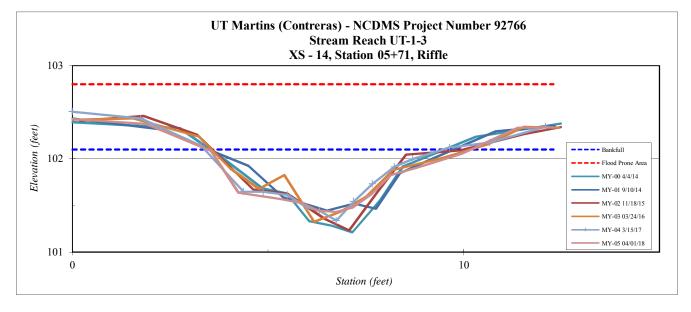
Stream Type	Е
Stream Type	


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 13, Riffle
Reach	UT 1-3
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.30	96.64
1.89	96.67
3.22	96.53
3.70	96.36
4.63	95.96
5.03	95.96
5.55	95.88
5.76	95.88
6.37	96.01
6.64	96.20
7.15	96.30
7.56	96.50
8.59	96.64
9.74	96.58
10.67	96.64

SUMMARY DATA	
Bankfull Elevation:	96.5
Bankfull Cross-Sectional Area:	1.4
Bankfull Width:	4.0
Flood Prone Area Elevation:	97.1
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	11.4
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.0

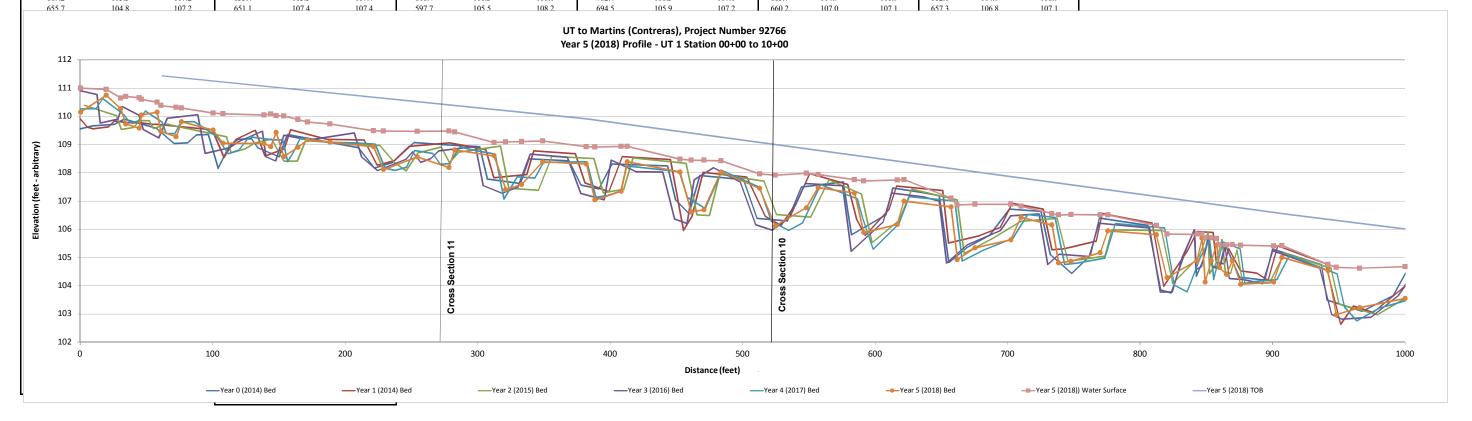
Stream Type C/E	
-----------------	--


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 14, Riffle
Reach	UT 1-3
Date:	4/1/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	102.43
1.88	102.38
3.54	102.09
4.25	101.64
5.33	101.57
5.84	101.53
6.28	101.45
6.74	101.43
7.15	101.48
7.66	101.63
8.13	101.83
8.80	101.91
9.95	102.06
11.38	102.34
12.29	102.34

SUMMARY DATA	
Bankfull Elevation:	102.1
Bankfull Cross-Sectional Area:	2.6
Bankfull Width:	6.7
Flood Prone Area Elevation:	102.8
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.3
Entrenchment Ratio:	3.7
Bank Height Ratio:	1.0

Stream Type	C/E

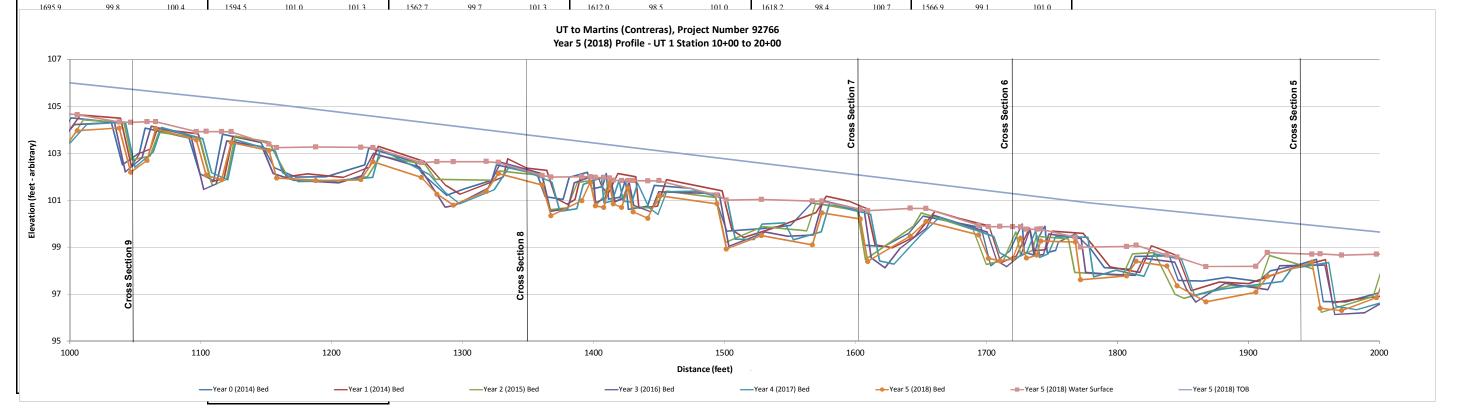


UT to Martins (Contreras), NC DMS Project Number 92766 UT 1 Station 00+00 - 10+00

92766 4/1/18 Perkinson, Butler

-11	i cikiiisoli, Butici		1			ı						1					
	2014			2014			2015			2016			2017			2018	
Y	ear 0 Monitoring \Su	irvey	Y	ear 1 Monitoring \	Survey)	Year 2 Monitoring \	ear 2 Monitoring \Survey Year 3 Monitoring		ear 3 Monitoring \S	y Survey Year 4 Monitoring \Survey				Year 5 Monitoring \Survey		
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
1001.1	104.5	105.0	1008.1	104.6	105.1	1000.3	103.6	104.9	1003.6	104.2	105.0	1013.1	104.2	104.6	1005.8	104.0	104.7
991.0	103.6	105.0	999.2	104.0	105.1	979.1	103.0	104.9	994.8	103.7	105.0	1000.5	103.5	104.7	999.9	103.6	104.7
967.6	103.1	105.0	975.8	103.0	105.2	950.3	103.3	105.0	974.1	102.9	104.9	980.8	103.2	104.6	965.7	103.2	104.6
941.1	103.5	105.0	961.0	103.3	105.2	944.1	104.6	105.0	952.2	102.8	105.1	963.4	102.8	104.6	948.1	103.0	104.7
936.9	104.7	105.2	951.3	102.6	105.2	908.9	105.2	105.6	944.7	103.0	105.0	954.3	103.2	104.6	941.8	104.5	104.8
899.9	105.3	105.7	940.2	104.8	105.2	897.8	104.1	105.6	935.5	104.6	105.1	948.8	104.4	104.7	907.2	105.0	105.4
894.1	104.2	105.7	903.9	105.4	105.8	877.5	104.1	105.6	900.3	105.2	105.7	912.9	105.1	105.5	900.7	104.1	105.4
875.1	104.3	105.7	896.7	104.2	105.8	873.1	105.3	105.7	892.6	104.1	105.7	903.3	104.2	105.4	876.0	104.0	105.4
863.9	105.5	105.7	887.8	104.4	105.8	868.4	104.4	105.7	877.5	104.2	105.6	887.1	104.2	105.5	869.7	104.9	105.5
860.2	104.7	105.7	875.7	104.5	105.8	864.1	104.5	105.7	867.4	104.3	105.7	879.2	104.1	105.4	865.2	104.4	105.4
854.4	104.7	105.8	866.9	105.3	105.8	861.8	105.6	105.8	864.2	105.4	105.7	875.6	105.3	105.5	859.9	104.6	105.4
851.1	105.7	105.9	863.7	104.8	105.8	857.0	104.8	105.8	860.0	104.6	105.8	862.5	105.5	105.7	857.8	105.4	105.7
847.6	104.9	105.9	857.5	104.8	105.8	852.4	104.4	105.8	854.7	104.7	105.8	855.5	104.2	105.7	853.8	104.9	105.7
842.6	104.3	105.9	855.1	105.9	106.0	851.1	105.9	106.0	851.7	105.7	106.0	852.4	105.6	105.9	849.0	104.1	105.7
840.9	106.0	106.2	843.3	105.9	106.3	844.7	105.1	106.1	846.5	104.7	106.0	845.6	105.0	105.9	846.7	105.7	105.8
835.0	105.3	106.2	835.5	105.2	106.2	824.5	104.1	106.1	842.1	104.6	106.0	835.5	103.8	105.9	843.0	104.9	105.8
823.4	103.7	106.2	817.9	104.0	106.3	816.2	106.0	106.3	841.1	106.0	106.1	825.9	104.0	105.9	820.4	104.3	105.8
815.6	103.8	106.2	809.3	106.2	106.4	778.7	106.0	106.6	831.7	105.0	106.1	818.7	106.0	106.1	812.4	105.8	106.1
806.1	106.1	106.5	771.6	106.6	106.9	773.5	105.0	106.7	824.4	103.8	106.2	781.3	106.2	106.5	775.6	105.9	106.5
769.4	106.4	106.8	766.9	105.6	106.9	745.6	104.9	106.7	815.1	103.8	106.1	773.4	105.0	106.5	769.9	105.2	106.5
762.6	105.1	106.8	742.5	105.3	106.9	737.4	106.4	106.9	807.1	106.0	106.4	751.9	104.8	106.5	747.8	104.9	106.5
748.3	104.4	106.8	733.3	105.3	106.9	710.4	106.3	107.1	769.0	106.2	106.8	743.0	104.7	106.5	738.5	104.8	106.5
732.1	105.1	106.8	726.8	106.7	106.9	688.0	105.6	107.0	761.6	105.0	106.9	735.8	106.4	106.7	733.5	106.2	106.5
725.1	106.6	107.0	703.6	106.9	107.3	667.1	105.1	107.1	738.9	105.1	106.8	715.2	106.5	106.9	710.2	106.4	106.8
701.4	106.7	107.2	694.4	106.1	107.4	661.9	107.0	107.1	730.2	104.8	106.8	703.9	105.7	106.9	702.4	105.6	106.9
686.2	105.8	107.2	679.0	105.8	107.4	627.8	107.4	108.1	723.8	106.5	106.9	681.5	105.3	106.9	675.3	105.3	106.9
669.2	105.3	107.2	655.4	105.5	107.4	618.4	106.3	108.1	702.4	106.5	107.1	665.7	104.9	106.9	662.0	104.9	106.9
655.7	1040	107.2	651.1	107.4	107.4	507.7	105.5	100.2	604.5	1050	107.2	CC0.2	107.0	107.1	657.3	1060	107.1

	2014	2014	2015	2016	2017	2018
Avg. Water Surface Slope	0.0069	0.0066	0.0069	0.0068	0.0068	0.0068
Riffle Length	33	32	31	30	30	31
Avg. Riffle Slope	0.0107	0.0118	0.0117	0.0132	0.0131	0.0129
Pool Length	40	42	39	40	39	41
Pool to Pool Spacing	66	71	64	63	66	64

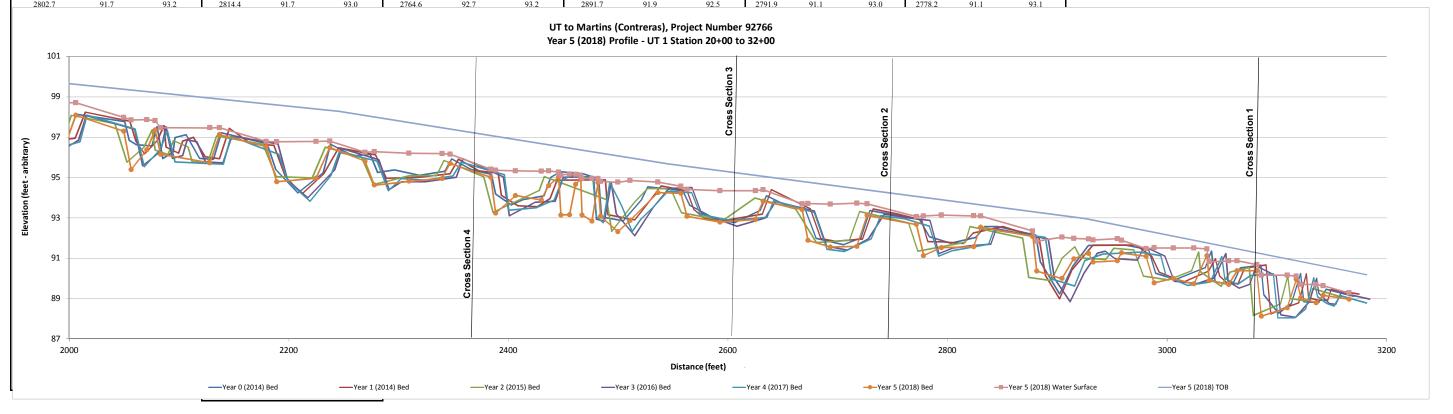


UT to Martins (Contreras), NC DMS Project Number 92766 UT 1 Station 10+00 - 20+00

Project Number 92766 Date 4/1/18 Perkinson, Butler

ew	reikilisoli, bullel					1			1								
	2014			2014			2015			2016			2017			2018	
Y	ear 0 Monitoring \Su		Y	Year 1 Monitoring \Survey		Year 2 Monitoring \Survey			Year 3 Monitoring \Survey			Year 4 Monitoring \Survey			Year 5 Monitoring \Survey		
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
2006.3	98.1	98.7	2005.5	97.0	98.7	2001.8	98.1	98.8	2008.5	96.8	98.7	2009.8	96.8	98.9	2006.0	98.1	98.7
1999.4	97.1	98.7	1977.9	96.8	98.8	1995.2	96.9	98.8	1988.9	96.2	98.7	1982.5	96.3	98.9	1997.8	96.9	98.7
1974.3	96.7	98.7	1964.2	96.6	98.7	1955.6	96.2	98.8	1965.9	96.1	98.8	1967.0	96.5	98.9	1971.1	96.3	98.7
1957.1	96.7	98.7	1958.9	98.5	98.8	1949.4	98.1	98.8	1958.3	98.2	98.7	1961.2	98.3	98.9	1954.8	96.4	98.7
1952.0	98.5	98.8	1934.5	98.1	99.0	1916.1	98.7	99.4	1924.0	98.2	99.1	1944.7	98.2	98.9	1948.4	98.4	98.7
1937.4	98.2	98.9	1924.6	97.9	99.0	1907.8	97.3	99.3	1915.0	97.2	99.1	1933.3	98.1	98.9	1914.5	97.8	98.8
1916.5	98.0	99.0	1900.2	97.5	99.0	1885.8	97.4	99.3	1882.3	97.5	99.1	1925.9	97.5	98.9	1905.6	97.1	98.2
1907.4	97.5	99.0	1877.8	97.5	99.0	1850.7	96.8	99.2	1859.9	96.7	99.0	1905.0	97.4	98.9	1867.5	96.7	98.2
1883.9	97.7	99.0	1856.1	97.2	99.0	1844.0	97.0	99.3	1852.6	97.2	99.1	1879.7	97.2	99.0	1845.6	97.4	98.6
1865.1	97.6	99.0	1846.2	98.6	99.0	1828.1	98.8	99.2	1843.8	98.4	99.1	1859.0	97.0	99.0	1837.6	98.2	98.7
1846.5	97.6	99.0	1825.9	99.1	99.4	1811.5	98.7	99.3	1820.1	98.5	99.3	1848.9	98.5	98.9	1814.2	98.4	99.1
1839.6	98.6	99.0	1817.1	97.9	99.3	1804.0	97.8	99.3	1813.8	97.8	99.3	1827.7	98.7	99.1	1807.0	97.8	99.0
1813.6	98.6	99.4	1794.3	98.2	99.4	1788.1	97.9	99.3	1795.5	97.8	99.4	1820.4	97.8	99.2	1771.8	97.6	99.0
1809.5	98.1	99.4	1773.9	99.6	99.7	1767.3	97.9	99.3	1775.6	97.9	99.4	1798.8	98.0	99.2	1767.8	99.2	99.4
1790.1	98.1	99.4	1750.2	99.7	100.1	1762.4	99.4	99.5	1772.3	99.4	99.6	1781.6	97.7	99.2	1741.4	99.3	99.8
1779.6	98.9	99.5	1745.0	98.9	100.1	1737.9	99.5	99.9	1747.5	99.6	100.0	1777.3	99.4	99.5	1738.6	98.7	99.8
1767.8	99.6	99.7	1736.6	98.9	100.1	1735.2	98.9	99.9	1743.5	98.7	100.0	1752.8	99.5	99.8	1730.5	98.5	99.8
1754.8	99.2	99.7	1732.9	99.8	100.1	1726.3	98.6	99.9	1736.3	98.6	100.0	1747.3	98.7	99.8	1726.0	99.4	99.9
1752.9	98.9	99.7	1722.8	98.6	100.1	1722.3	99.6	100.0	1733.0	99.8	100.1	1740.7	98.6	99.8	1720.0	98.5	99.9
1746.3	98.8	99.7	1711.1	98.3	100.1	1713.0	98.4	100.0	1726.5	98.7	100.1	1737.5	99.7	99.9	1710.3	98.4	99.9
1744.5	99.9	100.0	1702.1	99.9	100.3	1699.9	98.3	100.0	1715.2	98.2	100.1	1730.9	98.8	99.9	1701.5	98.5	99.9
1739.8	99.4	100.0	1678.8	100.2	100.7	1689.8	99.8	100.2	1707.9	98.4	100.1	1720.1	98.5	99.9	1694.1	99.5	99.9
1736.5	98.7	100.0	1660.8	100.5	100.9	1650.2	100.5	100.9	1700.6	99.7	100.1	1710.1	98.8	99.9	1653.6	100.1	100.7
1728.7	98.8	100.1	1645.4	99.4	100.9	1644.2	99.9	100.9	1659.2	100.4	100.9	1705.6	99.5	99.9	1641.8	99.5	100.7
1727.2	100.0	100.2	1628.5	99.0	100.9	1607.6	98.5	100.8	1654.1	99.8	100.9	1664.3	100.3	100.7	1609.2	98.4	100.6
1717.9	98.9	100.2	1614.7	99.1	100.9	1601.4	100.6	100.9	1634.2	99.0	100.9	1649.7	99.5	100.7	1603.6	100.2	100.6
1703.3	98.2	100.2	1608.8	100.6	101.0	1569.7	100.9	101.2	1622.4	98.1	101.0	1629.2	98.3	100.7	1574.2	100.5	101.0
1605.0	00.9	100.4	15045	101.0	101.2	1562.7	00.7	101.2	1612.0	00.5	101.0	1610 2	09.4	100.7	1566.0	00.1	101.0

	2014	2014	2015	2016	2017	2018
Avg. Water Surface Slope	0.0069	0.0066	0.0069	0.0068	0.0068	0.0068
Riffle Length	33	32	31	30	30	31
Avg. Riffle Slope	0.0107	0.0118	0.0117	0.0132	0.0131	0.0129
Pool Length	40	42	39	40	39	41
Pool to Pool Spacing	66	71	64	63	66	64

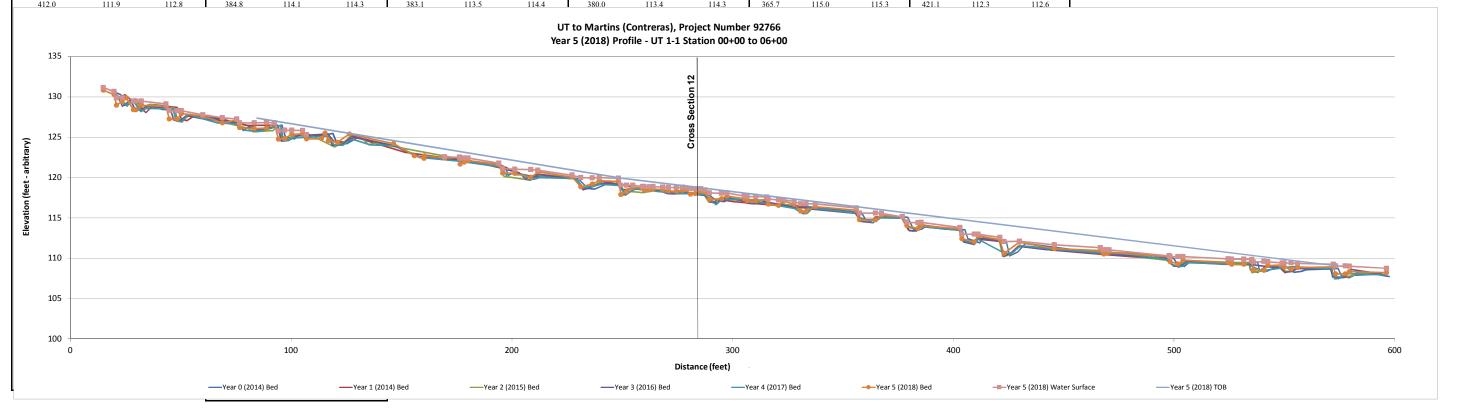


UT to Martins (Contreras), NC DMS Project Number 92766 UT 1 Station 20+00 - 32+00

Project Number 92766
Date 4/1/18
Crew Perkinson Perkinson, Butler

	01011	r eritinson, Batter																
		2014			2014			2015			2016			2017			2018	
	Ve	ar 0 Monitoring \S	HPVAV	١ ,	ear 1 Monitoring	Survey	,	Year 2 Monitoring	Survey		ear 3 Monitoring \	Survay	v	ear 4 Monitoring	r \Survey	l v	ear 5 Monitorin	a Survey
	Station	Bed Elevation		Station	Bed Elevation	Water Elevation	Station	Bed Elevation		Station	Bed Elevation	Water Elevation			Water Elevation			Water Elevation
ŀ	3170.0	89.1	89.4	3174.7	89.2	89.4	3158.6	89.1	89.3	3184.6	89.0	89.1	3181.7	88.8	89.2	3165.7	89.0	89.3
	3145.0	89.5	89.8	3149.4	89.4	89.8	3132.7	89.5	89.7	3158.5	89.3	89.7	3157.8	89.1	89.5	3142.1	89.2	89.6
	3138.3	88.8	89.8	3146.4	88.9	89.8	3129.4	88.8	89.7	3153.6	88.7	89.7	3151.8	88.6	89.4	3135.6	88.8	89.7
	3124.6	88.8	89.8	3137.7	88.9	89.8	3112.3	89.0	89.7	3148.0	88.7	89.8	3145.6	88.7	89.5	3121.8	89.0	89.7
	3121.6	90.2	90.3	3128.9	89.0	89.9	3109.9	90.1	90.4	3138.3	89.3	89.8	3137.2	89.1	89.6	3117.7	90.0	90.1
	3113.2	88.7	90.4	3127.0	90.2	90.3	3103.3	88.7	90.2	3136.1	90.0	90.2	3133.7	90.0	90.0	3109.4	88.5	90.2
	3101.4	88.3	90.3	3119.8	88.8	90.4	3078.4	88.2	90.2	3129.8	88.9	90.2	3126.2	88.5	90.0	3085.8	88.1	90.1
	3088.0	89.2	90.4	3108.6	88.5	90.2	3074.6	90.5	90.6	3116.8	88.1	90.2	3116.3	88.0	90.1	3081.8	90.4	90.7
	3085.4	90.7	90.8	3094.5	88.2	90.2	3057.4	90.3	90.9	3103.6	88.2	90.2	3100.9	88.0	90.0	3063.8	90.4	90.9
	3066.9	90.5	91.0	3090.0	90.7	90.9	3048.9	89.6	90.9	3099.5	90.1	90.8	3097.0	90.2	90.5	3056.1	89.7	90.9
	3060.6	89.8	91.0	3070.6	90.5	91.0	3030.5	90.3	90.9	3081.2	90.6	90.9	3076.2	90.1	90.8	3038.3	89.9	90.8
	3053.7	89.7	91.1	3064.8	89.7	91.0	3028.8	91.3	91.6	3075.4	89.7	91.0	3064.3	89.7	90.7	3036.3	91.1	91.5
	3043.5	89.8	91.0	3055.2	89.7	91.0	3022.2	90.4	91.6	3065.6	89.5	91.0	3052.5	90.0	90.8	3024.4	89.7	91.5
	3040.2	91.3	91.6	3048.0	90.1	90.9	3001.7	89.9	91.6	3055.5	89.8	91.0	3049.9	91.1	91.3	3005.6	90.0	91.5
	3034.9	90.5	91.6	3044.2	91.0	91.6	2978.5	90.1	91.6	3053.4	91.2	91.6	3039.5	89.8	91.3	2988.1	89.8	91.5
	3007.6	89.9	91.6	3037.6	90.3	91.6	2969.7	91.4	91.7	3043.3	90.0	91.6	3018.4	89.6	91.4	2980.9	91.1	91.5
	2989.7	90.3	91.7	3014.9	89.8	91.5	2951.6	91.5	92.0	3027.9	89.7	91.6	2999.2	90.1	91.4	2958.4	91.3	91.9
	2983.2	91.4	91.7	2992.8	90.3	91.5	2944.0	90.9	92.0	3006.5	89.8	91.6	2994.2	91.1	91.4	2954.6	90.9	92.0
	2962.1	91.7	92.2	2986.1	91.1	91.8	2921.2	91.0	92.0	2998.0	91.1	91.6	2974.8	91.3	91.9	2932.7	90.8	91.9
	2928.5	91.6	92.1	2971.2	91.6	92.0	2916.0	91.6	92.1	2979.5	91.6	92.0	2941.4	91.2	91.9	2928.5	91.2	92.0
	2914.1	90.6	92.1	2932.5	91.7	92.0	2904.9	91.0	92.0	2973.0	90.9	92.1	2925.2	90.9	91.9	2914.9	91.0	92.0
	2902.0	89.2	92.1	2913.6	90.4	92.1	2894.5	89.9	92.1	2952.3	91.0	92.1	2915.7	89.6	91.8	2904.2	90.0	92.0
	2884.4	90.8	92.2	2902.2	89.0	92.1	2873.9	90.0	92.0	2943.6	91.3	92.1	2894.9	90.0	91.9	2881.3	90.4	91.8
	2880.3	92.1	92.6	2889.2	90.2	92.0	2868.3	92.0	92.5	2936.5	91.3	92.1	2889.0	92.0	92.3	2877.6	92.1	92.3
	2845.7	92.6	93.0	2883.3	92.0	92.5	2820.4	92.6	93.2	2924.4	90.3	92.1	2842.3	92.4	93.1	2830.1	92.5	93.1
	2833.9	92.6	93.1	2850.4	92.6	92.9	2816.1	91.8	93.2	2911.8	88.8	92.1	2837.4	91.7	93.0	2823.9	91.6	93.1
	2825.9	92.0	93.1	2823.5	92.2	93.1	2773.1	91.3	93.2	2897.2	90.0	92.1	2805.0	91.4	93.0	2794.5	91.5	93.1
	2802.7	91.7	93.2	2814.4	91.7	93.0	2764.6	92.7	93.2	2891.7	91.9	92.5	2791 9	91.1	93.0	2778.2	91.1	93.1

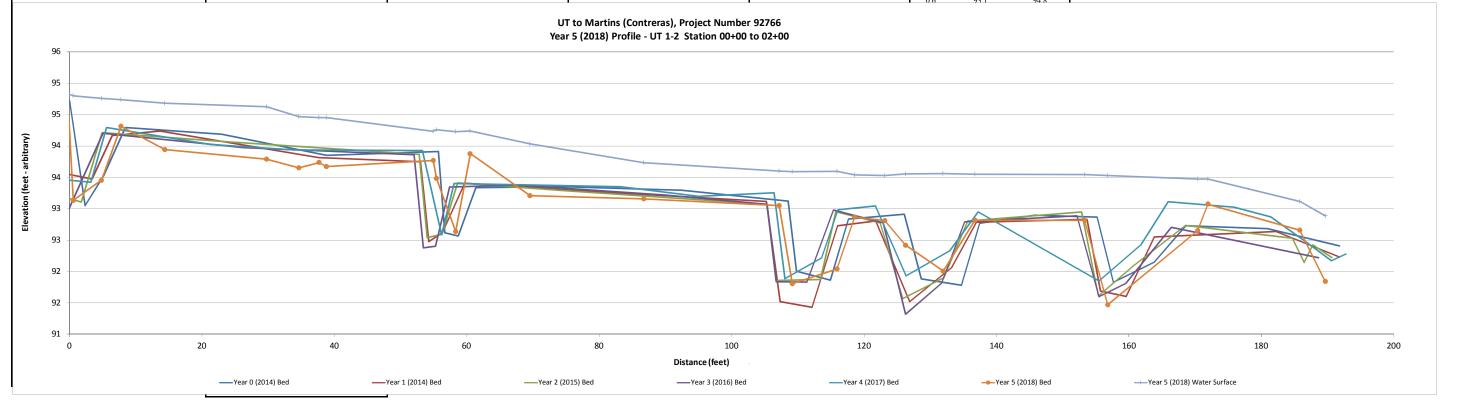
	2014	2014	2015	2016	2017	2018
Avg. Water Surface Slope	0.0069	0.0066	0.0069	0.0068	0.0068	0.0068
Riffle Length	33	32	31	30	30	31
Avg. Riffle Slope	0.0107	0.0118	0.0117	0.0132	0.0131	0.0129
Pool Length	40	42	39	40	39	41
Pool to Pool Spacing	66	71	64	63	66	64



UT to Martins (Contreras), NC DMS Project Number 92766 UT 1-1 Station 00+00 - 06+00

92766 4/1/18 Perkinson, Butler

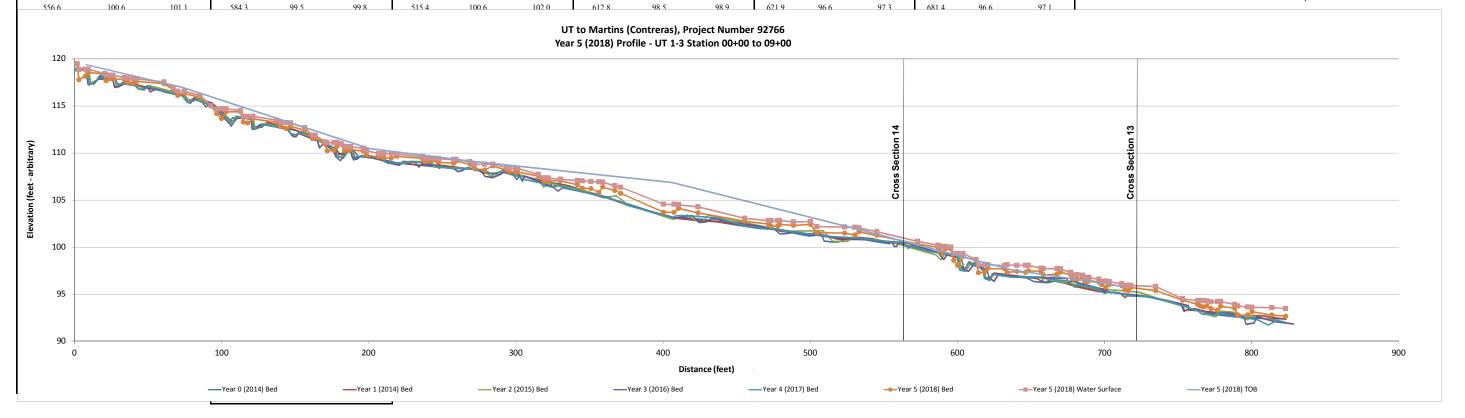
	Teramoon, Duner																
	2014			2014			2015			2016			2017			2018	
Ye	ear 0 Monitoring \Su	urvey	Y	ear 1 Monitoring \	Survey	Y	ear 2 Monitoring \	Survey	Y	ear 3 Monitoring \	Survey	Y	ear 4 Monitoring	g\Survey	Y	ear 5 Monitoring	g\Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
597.4	107.7	108.5	593.9	108.1	108.7	594.7	108.0	108.8	594.7	108.0	108.6	595.3	107.9	108.3	596.3	108.2	108.7
591.3	108.0	108.6	584.1	108.4	108.8	583.7	108.2	109.0	580.3	108.6	108.9	578.3	108.1	108.7	579.4	108.3	109.0
581.8	107.9	108.5	580.9	107.8	108.8	581.6	107.9	109.0	577.4	107.7	108.9	574.4	107.4	108.7	577.5	108.0	109.0
579.4	107.6	108.6	572.9	107.4	108.9	572.7	107.4	109.1	571.9	107.6	108.9	572.4	107.6	108.7	573.2	108.0	109.0
575.8	107.8	108.7	570.5	108.8	109.1	571.2	108.7	109.1	571.0	108.6	109.0	571.5	108.6	109.0	572.1	108.9	109.2
574.4	108.7	108.9	558.2	108.9	109.2	556.2	108.8	109.6	555.4	108.7	109.6	553.4	109.0	109.4	555.9	108.8	109.4
559.8	108.6	109.3	554.2	108.5	109.2	553.4	108.4	109.7	553.9	108.4	109.5	539.8	108.4	109.4	553.1	108.6	109.4
557.6	108.3	109.3	550.1	108.2	109.2	550.5	108.4	109.7	550.2	108.2	109.6	533.5	109.1	109.6	549.8	108.9	109.4
554.3	108.3	109.3	547.4	109.0	109.2	548.0	108.8	109.7	548.3	108.8	109.6	515.7	109.3	109.9	549.0	109.2	109.4
550.5	108.9	109.3	540.9	108.9	109.3	541.3	109.0	109.7	533.9	109.3	109.6	505.6	109.4	110.1	542.5	109.1	109.6
544.9	108.7	109.5	537.8	108.2	109.4	539.4	108.4	109.7	522.6	109.2	110.0	503.6	109.0	110.1	540.7	108.5	109.6
542.5	108.4	109.5	534.6	108.5	109.3	535.2	108.2	109.8	505.5	109.5	110.2	499.4	109.2	110.2	535.9	108.6	109.5
538.7	108.4	109.5	533.9	109.4	109.5	534.0	109.4	109.8	502.0	108.9	110.2	497.4	109.8	110.1	535.1	109.6	109.8
538.0	109.5	109.5	504.2	109.6	110.0	505.1	109.7	110.2	499.0	109.2	110.2	479.3	110.5	110.9	531.5	109.2	109.9
518.3	109.4	110.0	502.4	109.1	109.9	501.5	108.9	110.2	496.9	109.9	110.2	467.5	110.6	110.9	526.1	109.2	109.9
507.5	109.6	109.9	499.8	109.0	109.9	498.6	109.3	110.3	466.8	110.6	111.1	447.3	111.1	111.8	524.4	109.5	109.9
504.5	109.0	110.0	496.3	109.8	110.0	496.3	109.7	110.3	444.6	111.0	111.6	430.6	111.5	111.9	504.1	109.7	110.2
501.3	109.3	109.9	458.8	110.7	111.1	459.2	110.9	111.5	429.9	111.4	111.8	426.2	110.6	111.8	501.8	109.3	110.2
499.9	110.0	110.1	440.7	111.1	111.5	429.9	111.5	112.1	427.2	110.7	111.8	423.0	110.6	111.8	498.3	109.5	110.1
482.1	110.6	110.9	429.3	111.5	111.8	426.1	110.5	112.0	423.2	110.2	111.8	411.2	112.3	112.7	497.7	110.2	110.3
467.0	110.7	111.1	425.8	110.6	111.8	422.6	110.2	112.1	421.3	112.1	112.3	409.5	111.8	112.7	470.5	110.7	111.0
451.7	111.1	111.4	422.3	110.2	111.8	420.9	112.1	112.4	411.2	112.5	112.8	404.5	112.2	112.8	469.4	110.6	111.0
432.5	111.8	111.9	420.9	112.1	112.2	410.9	112.5	112.9	409.5	111.7	112.8	403.9	113.4	113.6	468.1	110.5	111.0
428.9	110.7	111.9	410.4	112.4	112.8	408.6	111.8	112.9	404.6	112.0	112.8	385.5	113.9	114.3	466.6	110.9	111.3
425.5	110.3	111.9	408.3	111.8	112.8	404.1	112.2	112.9	403.3	113.4	113.6	383.6	113.4	114.3	445.7	111.2	111.6
423.9	112.1	112.2	404.0	112.3	112.8	402.8	113.5	113.6	385.2	113.9	114.3	379.6	114.0	114.4	429.9	112.0	112.1
413.5	112.5	112.8	402.7	113.5	113.6	384.5	114.0	114.4	383.3	113.4	114.3	377.6	115.0	115.1	423.0	110.6	112.1
412.0	111 9	112.8	384.8	114 1	114 3	383 1	113.5	114.4	380.0	113.4	114 3	365.7	115.0	115 3	421.1	112 3	112.6


	2014	2014	2015	2016	2017	2018
Avg. Water Surface Slope	0.0383	0.0385	0.0381	0.0383	0.0388	0.0380
Riffle Length	24	26	19	20	26	13
Avg. Riffle Slope	0.0357	0.0306	0.0392	0.0309	0.0303	0.0330
Pool Length	8	9	10	8	8	9
Pool to Pool Spacing	32	34	27	26	33	20

UT to Martins (Contreras), NC DMS Project Number 92766 UT 1-2 Station 00+00 - 02+00 92766 4/1/18 Perkinson, Butler

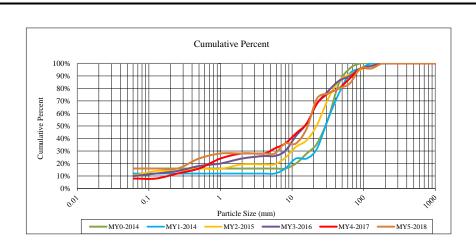
Y	2014 ear 0 Monitoring \Su	ırvev	Y	2014 ear 1 Monitoring \	Survey	,	2015 Year 2 Monitoring \	Survey	Y	2016 Year 3 Monitoring \S	Survey	Y	2017 ear 4 Monitoring	\Survey	,	2018 ear 5 Monitoring	\Survey
Station	Bed Elevation		Station	Bed Elevation		Station	Bed Elevation		Station	Bed Elevation	Water Elevation			Water Elevation			Water Elevation
191.8	92.4	93.0	191.8	92.2	92.9	190.6	92.2	93.0	188.6	92.2	92.9	192.8	92.3	93.0	189.7	91.8	92.9
180.9	92.7	93.2	182.1	92.6	93.1	187.8	92.4	93.0	166.4	92.7	93.5	190.5	92.2	93.0	185.8	92.7	93.1
168.6	92.7	93.2	163.8	92.6	93.3	186.5	92.1	93.0	159.5	91.8	93.5	186.6	92.5	93.1	171.9	93.1	93.5
163.8	92.1	93.2	159.6	91.6	93.3	184.7	92.5	93.0	155.5	91.6	93.5	181.4	92.9	93.3	170.4	92.7	93.5
157.7	91.8	93.2	155.7	91.7	93.3	168.6	92.7	93.5	152.2	92.9	93.5	175.9	93.0	93.4	156.8	91.5	93.5
155.2	92.9	93.2	153.7	92.8	93.3	160.6	92.1	93.6	135.2	92.8	93.5	165.9	93.1	93.6	153.3	92.8	93.5
145.8	92.9	93.3	137.0	92.8	93.4	155.4	91.6	93.5	131.7	91.8	93.5	161.9	92.4	93.6	136.7	92.8	93.5
137.5	92.8	93.3	133.3	92.1	93.4	152.8	92.9	93.5	126.2	91.3	93.5	155.5	91.8	93.6	131.9	92.0	93.6
134.7	91.8	93.3	126.9	91.5	93.4	135.7	92.8	93.6	122.9	92.8	93.6	137.2	92.9	93.6	126.2	92.4	93.6
128.6	91.9	93.3	121.8	92.8	93.5	132.1	91.9	93.7	115.4	93.0	93.6	132.9	92.3	93.6	123.1	92.8	93.5
126.0	92.9	93.3	116.0	92.7	93.5	125.9	91.6	93.7	111.4	91.8	93.6	126.4	91.9	93.6	118.6	92.9	93.5
117.6	92.8	93.4	112.1	91.4	93.5	122.5	92.8	93.6	106.7	91.8	93.6	121.7	93.0	93.6	115.9	92.0	93.6
114.9	91.9	93.4	107.3	91.5	93.5	115.7	93.0	93.6	105.3	93.1	93.6	116.0	93.0	93.7	109.1	91.8	93.6
109.8	92.0	93.3	105.3	93.1	93.4	113.4	91.9	93.7	89.9	93.2	93.8	113.6	92.2	93.7	107.2	93.0	93.6
108.5	93.1	93.4	79.0	93.3	93.9	106.7	91.9	93.7	67.7	93.4	94.1	108.0	91.9	93.7	86.7	93.2	93.7
92.4	93.3	93.6	59.7	93.4	94.0	105.3	93.1	93.7	57.4	93.3	94.1	106.4	93.3	93.7	69.5	93.2	94.0
74.5	93.4	93.9	56.3	92.6	94.0	74.6	93.3	94.3	55.2	92.4	94.1	95.0	93.2	93.7	60.5	93.9	94.2
61.3	93.3	93.9	54.3	92.5	94.1	58.6	93.4	94.4	53.4	92.4	94.1	83.2	93.3	94.0	58.3	92.6	94.2
58.7	92.6	93.9	53.0	93.7	94.1	56.2	92.6	94.4	52.0	93.9	94.2	58.1	93.4	94.3	55.4	93.5	94.3
56.6	92.6	93.9	37.6	93.8	94.4	54.0	92.5	94.4	26.3	94.0	94.5	56.2	92.6	94.3	54.9	93.8	94.2
55.7	93.9	94.0	13.6	94.2	94.8	52.8	93.9	94.5	5.1	94.2	94.9	53.3	93.9	94.2	38.8	93.7	94.5
38.8	93.9	94.3	6.5	94.2	94.9	24.1	94.1	94.9	-0.2	93.0	94.8	33.9	93.9	94.5	37.7	93.7	94.5
23.0	94.2	94.6	3.4	93.5	94.9	4.9	94.2	95.1	-2.0	93.3	94.8	21.3	94.0	94.7	34.6	93.6	94.5
8.4	94.3	94.7	-1.4	93.6	94.8	1.8	93.1	95.1	-3.2	94.7	94.9	5.6	94.3	94.9	29.8	93.8	94.6
5.1	93.5	94.8	-2.2	94.6	94.9	-1.2	93.2	95.1	-50.5	94.8	95.1	3.2	93.4	94.9	14.4	93.9	94.7
2.3	93.1	94.7				-2.7	94.7	95.1				-0.9	93.5	94.8	7.8	94.3	94.7
0.0	94.7	95.0				-50.1	94.7	95.3				-3.2	94.8	95.0	4.8	93.5	94.8
															0.6	93.1	94 8

	2014	2014	2015	2016	2017	2018
Avg. Water Surface Slope	0.0105	0.0102	0.0096	0.0074	0.0090	0.0092
Riffle Length	29	27	30	32	30	20
Avg. Riffle Slope	0.0108	0.0112	0.0114	0.0093	0.0123	0.0101
Pool Length	10	10	9	10	10	11
Pool to Pool Spacing	38	37	38	38	38	31


UT to Martins (Contreras), NC DMS Project Number 92766 UT 1-3 Station 00+00 - 09+00

Project Number 92766
Date 4/1/18
Crew Perkinson, Butler

Crew	Perkinson, Butler																
	2014			2014			2015			2016			2017			2018	
v	ear 0 Monitoring \Su	MAYON/	,	Year 1 Monitoring \	Emmon	,	Year 2 Monitoring \	Cuman	,	ear 3 Monitoring \	Curron		ear 4 Monitoring	· \Cumuox	٠,	ear 5 Monitoring	a \Curvov
Station	Bed Elevation		Station	Bed Elevation	Water Elevation	Station		Water Elevation	Station	Bed Elevation				Water Elevation			Water Elevation
822.4	92.4	92.9	823.2	92.3	92.8	822.3	92.0	92.9	828.3	91.8	92.9	823.1	92.0	92.8	823.1	92.6	93.5
807.4	92.4	93.0	808.3	92.7	93.0	799.3	92.7	93.3	816.1	92.1	92.9	817.2	92.2	92.8	813.6	92.8	93.6
789.7	92.6	93.3	793.4	92.7	93.1	797.3	92.3	93.4	803.6	92.6	93.1	815.7	92.1	92.8	800.2	93.1	93.6
775.6	92.8	93.5	781.8	93.0	93.4	792.8	92.5	93.4	801.6	91.9	93.1	811.2	91.7	92.8	797.2	92.8	93.6
757.6	93.4	93.8	769.7	93.1	93.5	789.1	93.0	93.6	796.3	91.8	93.3	803.8	92.3	92.8	790.7	92.8	93.7
754.1	93.2	93.8	756.4	93.3	93.7	779.1	93.2	93.8	794.6	92.6	93.4	788.0	92.7	93.2	788.4	93.5	93.9
752.0	93.8	93.9	754.8	93.2	93.7	775.7	92.6	93.9	784.6	93.0	93.7	777.2	93.0	93.4	778.8	93.7	94.2
727.9	94.8	95.0	752.6	93.8	93.9	772.5	92.7	94.0	771.3	93.0	93.8	774.3	92.8	93.4	776.7	93.3	94.2
707.0	95.1	95.4	738.3	94.4		763.1	93.3	94.0	761.0	93.5	94.0	766.0	92.9	93.5	772.4	93.5	94.2
681.7	95.9	96.2	729.5	94.7	95.1	741.2	94.3	94.9	758.0	93.3	94.1	763.2	93.2	93.6	769.5	93.7	94.3
665.8	96.4	97.0	715.1	94.8	95.2	723.6	95.2	95.6	757.0	93.8	94.0	742.7	94.3		767.2	93.6	94.3
662.5	96.3	97.0	713.7	94.6	95.2	694.6	95.6	96.1	742.7	94.3	94.9	728.9	94.7		765.1	93.7	94.3
660.1	96.2	97.0	710.2	95.1	95.3	656.6	96.7	97.5	732.3	94.6		717.5	94.8	95.2	763.2	93.9	94.3
651.4	96.4	97.1	696.1	95.2	95.6	624.8	97.1	97.9	722.1	94.8	95.6	702.2	95.3	95.6	753.1	94.3	94.5
646.9	96.7	97.2	679.2	95.9	96.2	621.7	96.4	97.9	712.6	95.0	95.7	700.5	95.1	95.6	734.7	95.4	95.8
630.3	97.0	97.4	665.1	96.6	97.0	619.0	96.7	97.9	706.1	95.2	95.8	698.1	95.2	95.6	717.9	95.7	95.9
624.0	97.2	97.5	661.4	96.3	97.0	617.6	97.8	98.1	704.0	95.1	95.8	696.2	95.7		716.0	95.4	96.0
621.8	96.7	97.5	657.9	96.3	97.0	609.3	98.3	98.9	700.2	95.5	95.8	681.7	96.0		713.9	95.4	95.9
618.3	96.8	97.5	653.5	96.7	97.0	605.9	97.5	98.9	677.3	96.4	96.9	680.1	95.7	96.2	711.7	95.9	96.1
617.1	97.7	97.8	624.8	97.2	97.4	602.7	97.5	98.9	675.6	96.2	96.9	678.1	95.9	96.2	703.2	96.0	96.3
607.2	98.2	98.7	622.0	96.4	97.4	600.9	99.1	99.3	674.3	96.7	97.1	676.7	96.4		700.9	95.7	96.4
605.0	97.4	98.7	619.6	96.6	97.4	591.2	99.2	99.7	643.7	96.9	97.5	663.3	96.6	96.9	697.9	96.0	96.3
600.9	98.1	98.6	617.6	97.8		588.7	98.6	99.7	628.1	97.1	97.6	660.3	96.3	97.0	696.2	96.2	96.6
600.2	98.9	99.1	607.9	98.4	98.7	585.3	99.2	99.8	624.9	96.3	97.5	658.5	96.3	97.0	689.6	96.5	96.8
591.1	99.3	99.5	605.0	97.6	98.8	553.9	100.6	101.4	621.5	96.7	97.6	657.0	96.8	97.1	688.3	96.3	96.8
582.1	99.5	99.9	601.6	98.1	98.7	530.1	101.0	101.8	619.9	97.7	98.0	637.1	96.8	97.3	686.4	96.4	96.7
573.3	99.8	100.1	599.8	98.9		525.3	100.6	101.8	616.7	97.6	98.2	624.1	97.1	97.4	685.1	96.7	97.0
556.6	100.6	101.1	58/13	00.5	9 00	515.4	100.6	102.0	612.8	08.5	0.80	621.0	96.6	07.3	681.4	96.6	97.1


	2014	2014	2015	2016	2017	2018
Avg. Water Surface Slope	0.0321	0.0321	0.0321	0.0317	NA*	0.0317
Riffle Length	41	34	27	22	25	15
Avg. Riffle Slope	0.0318	0.0422	0.0413	0.0467	NA*	0.0346
Pool Length	12	11	11	8	10	11
Pool to Pool Spacing	51	45	40	29	35	26

^{*} Insufficient water in channel to calculate slope.

Pı	oject Name: UT to Ma	artins Creek (C	ontreras)									
	Cross-Se											
	Feature	: Riffle		2010								
D	Material	C: ()	Total #	2018 Item %	Cum %							
Description Silt/Clay	silt/clay	Size (mm) 0.062	4	16%	16%							
Sit/Clay	very fine sand	0.062	0	0%	16%							
	fine sand		0	0%	16%							
Sand		0.250		0.70								
Sand	medium sand	0.50	2	8%	24%							
	coarse sand	1.00	1	4%	28%							
	very coarse sand	2.0	0	0%	28%							
	very fine gravel	4.0	0	0%	28%							
	fine gravel	5.7	0	0%	28%							
	fine gravel	8.0	2	8%	36%							
	medium gravel	11.3	0	0%	36%							
Gravel	medium gravel	16.0	3	12%	48%							
	course gravel	22.3	6	24%	72%							
	course gravel	32.0	1	4%	76%							
	very coarse gravel	45	1	4%	80%							
	very coarse gravel	64	1	4%	84%							
	small cobble	90	3	12%	96%							
Cobble	medium cobble	128	0	0%	96%							
Copple	large cobble	180	1	4%	100%							
	very large cobble	256	0	0%	100%							
	small boulder	362	0	0%	100%							
large cobble 180 1 4%												
										Bedrock	0%	100%
										TOTAL % of	whole count	

Summary I	Data
D16	0.25
D35	7.72
D50	16.4
D84	64
D95	87

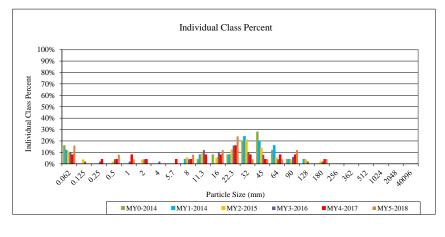


Table 10a. Baseline Stream Data Summary (UT -1 to Martin's Creek) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter	Gauge]	The color of the			Existing	Condit	ion (UT	-1)]	Reference	Reach(es) Data		Des	sign (UT-	-1)		Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					9.2			16.9		11.7			21.7		12.5	15.0		11.7	12.3	12.2	13.8	0.7
Floodprone Width (ft)					31.0			51.0		20			410		50	100		50	71	50	100	27
BF Mean Depth (ft)					1.0			1.6		0.6			1.0		1.0	1.2		0.9	1.0	1.1	1.1	0.1
BF Max Depth (ft)					2.1			2.6		0.9			2.5		1.2	1.7		1.5	1.7	1.7	1.8	0.2
BF Cross Sectional Area (ft ²)					12.8			18.8		10.2			13.1		12.5	18.0		11.5	12.7	12.8	14.7	1.2
Width/Depth Ratio					6.0			17.6		10.7			17.0		12.5	12.5		10.6	11.9	11.7	13.7	1.0
Entrenchment Ratio					>2.4			>5		1.7			32.0		3.5	7.7		4.1	5.8	5.8	8.5	2.1
Bank Height Ratio					1.1			1.7		1.0			1.0		1.0	1.0			1.0	1.0		
Profile				•														•				
Riffle length (ft)																		5	33	35	55	12.2
Riffle slope (ft/ft)									0.2000			1.9000		0.0140	0.0140		0.0000	0.0107	0.0115	0.0230	0.0053	
Pool length (ft)																		10.0	40.0	36.0	82.0	17.4
Pool Max depth (ft)										2.2			2.5		2.0	3.6		2.3	2.6	2.7	2.8	0.2
Pool spacing (ft)								48.0			231.0		50.0	105.0		10.0	66.0	70.0	118.0	31.0		
Pattern																						
Channel Beltwidth (ft)										16			55		19	60		19			60	
Radius of Curvature (ft)										28			47		23	53		23			53	
Rc:Bankfull width (ft/ft)										2			3		1.8	3.5		1.8			3.5	
Meander Wavelength (ft)										70			260		87.5	180		87.5			180	
Meander Width ratio										4.4			17.6		7	12		7			12	
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																						
Rosgen Classification						В	c/Cc/E				1	Aa/Bc				С				Е		
Bankfull Velocity (fps)							.6 - 4.2									3.5 - 4.2						
Bankfull Discharge (cfs)						۷	16 - 60															
Valley Length (ft)																						
Channel Thalweg Length (ft)																				3180		
Sinuosity							1.17					1.19				1.5				1.5		
Water Surface Slope (ft/ft)						(0.0075				(0.0333				0.0058				0.0069		
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter										Referen	ce Reach(e	s) Data			Design			Mo	nitorinș	g Basel	ine	
	Ri%/RU%P%G%/S%																					
Ri%/RU%P%G%/S%																						
SC%/SA%/G%/C%/B%BE%																						
d16/d35/d50/d84/d95	3.0	12.6	17.9	72.3	84.0																	
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																						
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0										·				•				·				

Table 10c. Baseline Stream Data Summary (UT 1-1 and UT 1-2 to Martin's Creek) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter	Gauge]	Regional Cu	ırve		Pre-Ex	isting C	ondition	1		Reference	Reach(es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					4.5			6.7		11.7			21.7				4.5		2.9			
Floodprone Width (ft)					5.4			8.5		20			410				13.5		14			
BF Mean Depth (ft)					0.3			0.4		0.6			1.0				0.4		0.5			
BF Max Depth (ft)					0.5			1.0		0.9			2.5				0.5		0.7			
BF Cross Sectional Area (ft ²)					1.5			2.4		10.2			13.1				1.7		1.4			
Width/Depth Ratio					13.2			18.9		10.7			17.0				12.0		6.0			
Entrenchment Ratio					1.2			1.6		1.7			32.0				3.0		4.8			
Bank Height Ratio					1.0			4.4		1.0			1.0				1.0		1.0			
Profile													•									
Riffle length (ft)																		5	24	15	67	21
Riffle slope (ft/ft)										0.2000			1.9000				0.0140	0.0000	0.0357	0.0332		0.0245
Pool length (ft)																		4.0	8.0	8.0	14.0	2.3
Pool Max depth (ft)										2.2			2.5				0.8					
Pool spacing (ft)										48.0			231.0				32.0	6.0	32.0	23.0	78.0	22.0
Pattern																						
Channel Beltwidth (ft)										16			55									
Radius of Curvature (ft)										28			47				34			34		
Rc:Bankfull width (ft/ft)										2			3				7.6			7.6		
Meander Wavelength (ft)										70			260									
Meander Width ratio										4.4			17.6									
T																						
Transport parameters						ı		ı									ı	Г		ı	I	
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						<u> </u>
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters							~								1	~		ı				
Rosgen Classification			1				C					Aa/Bc				<u>C</u>				E		
Bankfull Velocity (fps)							3.5 - 4.1									3.5 - 4.1						
Bankfull Discharge (cfs)							6.0 - 7.0)														
Valley Length (ft)																				#00		
Channel Thalweg Length (ft)							:	_												580		
Sinuosity							.02 - 1.0					1.19				1.03				1.03		
Water Surface Slope (ft/ft)						0.0	096 - 0.0)333				0.0333			0.00	0.03 - 0.03	333			0.0383		
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10d. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
UT to Martin's Creek Mitigation Project - DMS Project Number 92766

8 9																		
Parameter	Pre-l	Existing Condi	tion			Refere	nce Reach(es) Data			Design			Mo	onitori	ing Ba	ıseline	,
Ri%/RU%P%G%/S%																		
SC%/SA%/G%/C%/B%BE%																		
d16/d35/d50/d84/d95																		
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																		
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																		

Table 10e. Baseline Stream Data Summary (UT 1-3 to Martin's Creek) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter	Gauge		Regional Cı	ırve		Pre-Ex	isting C	ondition	1		Reference	Reach(es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					6.3			14.3		11.7			21.7				6.5	5.9	6.6	6.6	7.3	1
Floodprone Width (ft)					10.2			32.6		20			410				14.0		25	25		
BF Mean Depth (ft)					0.2			0.5		0.6			1.0				0.5	0.4	0.5	0.5	0.5	0.1
BF Max Depth (ft)					0.8			1.0		0.9			2.5				0.7	0.9	1.0	1.0	1.0	0.1
BF Cross Sectional Area (ft ²)					3.2			3.5		10.2			13.1				3.5	2.7	3.2	3.2	3.6	0.6
Width/Depth Ratio					12.5			58.6		10.7			17.0				12.0	14.6	14.7	14.7	14.8	0.1
Entrenchment Ratio					>1.6			2.3		1.7			32.0				2.2	3.4	3.8	3.8	4.2	0.6
Bank Height Ratio					1.2			1.3		1.0			1.0				1.0		1.0	1.0		
Profile												•	•									
Riffle length (ft)																		4	41	22	173	44
Riffle slope (ft/ft)										0.2000			1.9000				0.0140	0.0047	0.0318	0.0326	0.0913	0.0218
Pool length (ft)																		5.0	12.0	7.0	50.0	11.0
Pool Max depth (ft)										2.2			2.5				1.1					
Pool spacing (ft)										48.0			231.0				45.0	11.0	51.0	31.0	178.0	43.0
Pattern																					•	
Channel Beltwidth (ft)										16			55									
Radius of Curvature (ft)										28			47									
Rc:Bankfull width (ft/ft)										2			3									
Meander Wavelength (ft)										70			260									
Meander Width ratio										4.4			17.6									
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						—
Additional Reach Parameters												<u> </u>										
Rosgen Classification							В					Aa/Bc				В				C/E		
Bankfull Velocity (fps)							2.5 - 2.9)				1100 250				2.3						
Bankfull Discharge (cfs)							8.0 - 10.0															
Valley Length (ft)							20.															
Channel Thalweg Length (ft)																				813		
Sinuosity							1.08					1.19				1.08				1.08		
Water Surface Slope (ft/ft)							0.0275					0.0333				0.0275				0.0321		
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10f. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
UT to Martin's Creek Mitigation Project - DMS Project Number 92766

8 9																		
Parameter	Pre-l	Existing Condi	tion			Refere	nce Reach(es) Data			Design			Mo	onitori	ing Ba	ıseline	,
Ri%/RU%P%G%/S%																		
SC%/SA%/G%/C%/B%BE%																		
d16/d35/d50/d84/d95																		
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																		
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																		

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

BF Cross Sectional Area (ft²) 11.7 11.1 9.0 9.0 8.4 8.4

 Width/Depth Ratio
 11.7
 14.8
 15.2
 13.4
 12.6
 12.6

 Entrenchment Ratio
 4.3
 3.9
 4.3
 4.5
 4.9
 4.9

 Bank Height Ratio
 1.0
 1.0
 1.0
 1.0
 1.1
 1.1

 d50 (mm)
 --- --- --- --- --- --- ---

UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Of to Martin S Creek Miligation Froje	ct - DMS	Troject Ni	uniber 92	700																																							
			C	Cross Secti	ion 1					C	ross Sectio	on 2						Cross Se	ection 3						Cros	ss Section	n 4					C	ross Sect	tion 5					(Cross Section	n 6		
Parameter				UT - 1 Ri	iff1e						UT - 1 Rif	fle						UT - 1	Pool						UT	ր - 1 Riff l	le					1	UT - 1 Ri	iffle						UT - 1 Poo	ıl		
Dimension	MY0	MY1	MY2	MY3	MY4	MY5 N	1Y5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	2 MY	/3 M	IY4 N	MY5 MY5-	+ MY0) M	Y1 N	ЛҮ2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY/	4 MYS	75 MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY
BF Width (ft) 11.7	11.4	11.9	12.4	11.5	11.4		12.5	12.7	12.6	12.7	11.8	12.2		16.4	17.4	17.9	17.	.7 17	7.7	17.1	13.8	3 13	.3 1	14.0	13.1	12.9	12.5		12.1	11.3	13.4	10.9	11.4	11.3	.3	13.0	12.8	12.2	12.4	12.4	11.5	
Floodprone Width (ft) (approx	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0		NA	NA	NA	N/	A N	NA 1	NA	100.0	0 100	0.0	0.00	100.0	100.0	100.0		50.0	50.0	50.0	50.0	50.0	50.0	.0	NA	NA	NA	NA	NA	NA	1
BF Mean Depth (ft) 1.1	1.1	1.0	1.1	1.0	1.0		1.1	1.1	1.0	1.0	1.0	0.9		1.2	1.2	1.2	1.2	2 1	1.1	1.2	1.1	1.	.1	1.0	0.9	0.9	0.9		1.1	1.1	0.9	1.1	1.1	1.1	1	1.4	1.4	1.3	1.4	1.4	1.5	1
BF Max Depth (ft) 1.7	1.7	1.7	1.9	1.7	1.7		1.8	1.8	1.8	1.7	1.7	1.6		2.5	2.7	2.7	2.6	5 2	2.5	2.5	1.8	1.	.9	1.7	1.6	1.7	1.8		1.8	1.8	2.0	2.0	1.9	2.0)	2.8	2.6	2.6	2.7	2.6	2.7	T
BF Cross Sectional Area (ft ²) 13.3	12.7	12.4	13.1	11.6	11.6		13.4	13.4	13.1	12.2	11.4	11.4		19.9	21.6	21.2	21.	.0 19	19.7 1	19.7	14.7	14	.7 1	13.5	11.9	11.3	11.3		12.8	12.1	11.8	12.0	12.6	12.6	.6	18.3	18.0	16.3	17.8	17.2	17.2	
Width/Depth Ratio	10.3	10.2	11.4	11.7	11.4	11.2		11.7	12.0	12.1	13.2	12.2	13.1		NA	NA	NA	N/	A N	NA 1	NA	13.0) 12	.0 1	14.5	14.4	14.7	13.8		11.4	10.6	15.2	9.9	10.3	10.1	.1	NA	NA	NA	NA	NA	NA	1
Entrenchment Ratio	8.5	8.8	8.4	8.1	8.7	8.8		8.0	7.9	7.9	7.9	8.5	8.2		NA	NA	NA	N/	A N	NA 1	NA	7.2	7.	.5	7.1	7.6	7.8	8.0		4.1	4.4	3.7	4.6	4.4	4.4	4	NA	NA	NA	NA	NA	NA	
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	J 1	1.0	1.0	1.0	1.	.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	<u>) </u>	1.0	1.0	1.0	1.0	1.0	1.0	1
d50 (mm)																													28.6	29.1	21.5	14.8	14.6	16.4	.4							
		•	C	Cross Secti	ion 7					C	ross Sectio	on 8						Cross Se	ection 9				-		Cros	s Section	n 10					Cr	ross Secti	ion 11								-	
Parameter				UT - 1 Ri	iffle					•	U T - 1 Rif	fle						UT - 1	Pool						U'.	Г - 1 Роо	ol					1	UT - 1 Ri	iffle									
Dimension	MY0	MY1	MY2	MY3	MY4	MY5 N	1Y5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	2 MY	/3 M	IY4 N	MY5 MY5-	+ MY0) M	Y1 N	ЛҮ2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	4 MYS	Y5 MY5+							
BF Width (ft) 11.7	12.8	11.7	11.0	10.3	10.3		12.2	12.1	11.9	11.7	11.9	12.5		9.4	9.2	10.0	9.9) 10	0.4	10.7	9.6	10	.1	9.5	9.4	9.2	8.7		12.3	12.3	11.9	12.0	11.3	10.4	.4							
Floodprone Width (ft) (approx	50.0	50.0	50.0	50.0	50.0	50.0		50.0	50.0	50.0	50.0	50.0	50.0		NA	NA	NA	N/	A N	NA 1	NA	NA	N.	A]	NA	NA	NA	NA		50.0	50.0	50.0	50.0	50.0	50.0	.0							
BF Mean Depth (ft	1.0	0.9	0.8	0.8	0.8	0.8		1.0	0.9	0.9	0.9	0.9	0.8		1.6	1.6	1.7	1.8	8 1	1.8	1.7	1.8	1.	.8	1.8	2.1	2.0	2.1		0.9	0.9	0.7	0.8	0.8	0.8	3							
BF Max Depth (ft	1.5	1.4	1.3	1.3	1.3	1.3		1.5	1.6	1.5	1.6	1.5	1.4		2.3	2.2	2.2	2.2	2 2	2.2	2.2	2.8	2.	.9	2.7	2.9	2.8	2.8		1.5	1.6	1.5	1.6	1.6	1.7	1							
				1	1					1				1													1		- 1														

17.0 18.3 17.5 19.8 18.0 18.0

NA NA NA NA NA

 NA
 NA
 NA
 NA
 NA
 NA

 1.0
 1.0
 1.0
 1.0
 1.0
 1.0

11.5 11.0 8.0 9.6 8.6 8.6

 13.2
 13.8
 17.7
 15.0
 14.8
 12.6

 4.1
 4.1
 4.2
 4.2
 4.4
 4.8

 1.0
 1.0
 1.0
 1.0
 1.0
 1.0

15.5 15.0 16.6 17.8 18.4 18.4

 NA
 NA
 NA
 NA
 NA

 NA
 NA
 NA
 NA
 NA

 1.0
 1.0
 1.0
 1.0
 1.0

Table 11b. Monitoring Data - Stream Reach Data Summary

UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter		Bas	seline (UT	· - 1)			M	Y-1 (UT -	1)			M	Y-2 (UT -	1)			M	IY-3 (UT ·	1)			M	IY-4 (UT -	1)			M	Y-5 (UT -	1)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)	11.7	12.3	12.2	13.8	0.7	11.3	12.3	12.3	13.3	0.7	11.7	12.5	11.9	14	0.9	10.9	12.0	12.0	13.1	0.8	10.3	11.6	11.5	12.9	0.8	10.4	11.4	11.4	12.5	0.8
Floodprone Width (ft)	50	71	50	100	27	50	71	50	100	27	50	71	50	100	27	50	71	50	100	27	50	71	50	100	27	50	71	50	100	27
BF Mean Depth (ft)	0.9	1.0	1.1	1.1	0.1	0.9	1.0	1.1	1.1	0.1	0.7	0.9	0.9	1.0	0.1	0.8	0.9	0.9	1.1	0.1	0.8	0.9	0.9	1.1	0.1	0.8	0.9	0.9	1.1	0.1
BF Max Depth (ft)	1.5	1.7	1.7	1.8	0.2	1.4	1.7	1.7	1.9	0.2	1.3	1.6	1.7	2.0	0.2	1.3	1.7	1.6	2.0	0.2	1.3	1.6	1.7	1.9	0.2	1.4	1.7	1.7	2.0	0.2
BF Cross Sectional Area (ft ²)	11.5	12.7	12.8	14.7	1.2	11.0	12.3	12.1	14.7	1.4	8.0	11.3	11.8	13.5	2.1	9.0	11.3	11.9	13.1	1.5	8.4	10.6	11.3	12.6	1.6	8.4	10.6	11.3	12.6	1.5
Width/Depth Ratio	10.6	11.9	11.7	13.7	1.0	10.3	12.2	12.1	14.2	1.6	11.9	14.0	14.0	17.0	1.7	9.9	12.9	13.0	15.0	1.8	10.4	12.6	12.9	14.3	1.5	10.3	12.4	12.7	13.9	1.3
Entrenchment Ratio	4.1	5.8	5.8	8.5	2.1	3.9	5.8	5.8	8.8	2.1	3.7	5.7	5.7	8.4	2.0	4.2	5.9	5.9	8.1	1.9	4.2	6.1	6.1	8.7	2.1	4.4	6.2	6.2	8.8	2.0
Bank Height Ratio		1.0	1.0				1.0	1.0				1.0	1.0				1.0	1.0				1.0	1.0				1.0	1.0		
Profile - UT -1																														
Riffle length (ft)		33	35	55	12.2	10	32	32	60	13	7	31	32	57	12	7	30	31	53	11	11	0.0000 0.0131 0.0135 0.0301 0.007					31	31	50	11
Riffle slope (ft/ft)	0.0000	0.0107	0.0115	0.0230	0.0053	0.0000	0.0118	0.0127	0.0250	0.0059	0.0000	0.0117	0.0116	0.0300	0.0060	0.0000	0.0132	0.0140	0.0252	0.01	0.0000	0.0131	0.0135	0.0301	0.0075	0.0021	0.0129	0.0134	0.0201	0.0049
Pool length (ft)	10	40	36	82	17	12	42	37	88	20	11	39	35	88	20	11	40	36	85	20	10	39	35	84	19	11	41	37	80	20
Pool Max depth (ft)	2.3	2.6	2.7	2.8	0.2	2.2	2.6	2.7	2.9	0.3	1.3	1.6	1.7	2.0	0.2	2.2	2.6	2.7	2.9	0.3	2.2	2.5	2.6	2.8	0.3	2.2	2.6	2.6	2.8	0.3
Pool spacing (ft)	10	66	70	118	31	12	71	72	118	28	11	64	59	121	30	11	63	64	120	31	13	66	67	118	29	11	64	68	116	31
Pattern																														
Channel Beltwidth (ft)	19			60																										
Radius of Curvature (ft)	23			53																										
Rc:Bankfull width (ft/ft)	1.8			3.5																										
Meander Wavelength (ft)	87.5			180																										
Meander Width ratio	7			12																										
Additional Reach Parameters																														
Rosgen Classification			E-Type					Ec-Type					Ec-Type					Ec-Type					Ec-Type					Ec-Type		
Channel Thalweg Length (ft)			3180					3184					3155					3199					3182					3166		
Sinuosity			1.5					1.5					1.5					1.5					1.5					1.5		
Water Surface Slope (Channel) (ft/ft)			0.0069					0.0066					0.0069					0.0068					0.0068					0.0068		
BF slope (ft/ft)																					0.0068									
Ri%/RU%P%G%/S%																														
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks																									<u>-</u>					
Channel Stability or Habitat Metric																														
Biological or Other																														

11.8 11.2 11.1 11.0 10.4 10.4

12.6 13.1 12.8 12.4 13.6 15.0

 4.1
 4.1
 4.2
 4.3
 4.2
 4.0

 1.0
 1.0
 1.0
 1.0
 1.0
 1.0

Table 11c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

			Cro	oss Section	n 12		
Parameter			U	T 1 -1 Rif	fle		
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	2.9	3.2	3.6	2.9	3.8	3.7	
Floodprone Width (ft) (approx)	14.0	14.0	14.0	14.0	14.0	15.0	
BF Mean Depth (ft)	0.5	0.4	0.4	0.4	0.4	0.4	
BF Max Depth (ft)	0.7	0.6	0.7	0.6	0.7	0.8	
BF Cross Sectional Area (ft ²)	1.4	1.3	1.5	1.3	1.4	1.4	
Width/Depth Ratio	6.0	7.9	8.6	6.5	10.3	9.8	
Entrenchment Ratio	4.8	4.4	3.9	4.8	3.7	4.1	
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	
d50 (mm)							

Table 11d. Monitoring Data - Stream Reach Data Summary
UT to Martin's Creek Mitigation Project - DMS Project Number 92766

UT to Martin's Creek Mitigation Proje	ct - DMS																									-				
Parameter		Base	eline (UT	1 - 1)			MY	-1 (UT 1	- 1)			MY	7-2 (UT 1	- 1)			MY	Y-3 (UT 1	- 1)			MY	7-4 (UT 1	- 1)			MY	Y-5 (UT 1	- 1)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)		2.9					3.2					3.6					2.9					3.8					3.7			1
Floodprone Width (ft)		14					14					14					14.0					14.0					15			i
BF Mean Depth (ft)		0.5					0.4					0.4					0.4					0.4					0.4			i
BF Max Depth (ft)		0.7					0.6					0.7					0.6					0.7					0.8			
BF Cross Sectional Area (ft ²)		1.4	1.4				1.3					1.5					1.3					1.4					1.4			i
Width/Depth Ratio		6.0					8.0					8.9					6.5					10.3					9.8			i
Entrenchment Ratio		4.8					4.4					3.9					4.8				3.7						4.1			·
Bank Height Ratio		1.0					1.0					1.0					1.0				1.0						1.0			
Profile - UT 1 - 1																														
Riffle length (ft)		24	15	67	21	7	26	17	67	21	5	19	15	66	17	7	20	14	67	15		26	18	68	21	2	13	11	37	9
Riffle slope (ft/ft)	0.0000	0.0357	0.0332	0.1101	0.0245	0.0104	0.0306	0.0308	0.0555	0.0143	0.0017	0.0392	0.0364	0.0936	0.0218	0.0026	0.0309	0.0359	0.0508	0.01	0.0000	0.0303	0.0310	0.0529	0.0136	0.0061	0.0330	0.0303	0.0980	0.0211
Pool length (ft)	4	8	8	14	2	6	9	8	17	3	5	10	8	19	4	4	8	8	13	2	4	8	7	13	2	4	9	8	18	4
Pool Max depth (ft)																														
Pool spacing (ft)	6	32	23	78	22	6	34	24	78	21	7	27	24	75	16	6	26	23	76	15	6	34	24	94	25	6	20	18	46	10
Pattern																														
Channel Beltwidth (ft)																														
Radius of Curvature (ft)			34																											
Rc:Bankfull width (ft/ft)			7.6																											
Meander Wavelength (ft)																														
Meander Width ratio																														
Additional Reach Parameters																														
Rosgen Classification			E-type					E-type					E-type					E-type					E-type					E-type		
Channel Thalweg Length (ft)			580					576					595					573					572					581		
Sinuosity			1.03					1.03					1.03					1.03					1.03					1.03		
Water Surface Slope (Channel) (ft/ft)			0.0383					0.0385					0.0381					0.0383					0.0388					0.038		
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%																														
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks																														
Channel Stability or Habitat Metric																														
Biological or Other																														

Table 11e. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

UT to Martin's Creek Mitigation Project - DMS Project Number 92766

			Cro	oss Section	n 13					Cro	oss Section	n 14		
Parameter			U'	Γ 1 - 3 Rif	fle					U'	T 1 - 3 Rif	fle		
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	5.9	5.6	4.7	4.2	3.5	4.0		7.3	7.8	8.1	7.8	6.7	6.7	
Floodprone Width (ft) (approx)	25.0	25.0	25.0	25.0	25.0	25.0		25.0	25.0	25.0	25.0	25.0	25.0	
BF Mean Depth (ft)	0.5	0.4	0.4	0.4	0.4	0.4		0.5	0.4	0.4	0.4	0.4	0.4	
BF Max Depth (ft)	0.9	0.7	0.7	0.8	0.6	0.6		1.0	0.8	1.0	0.9	0.8	0.7	
BF Cross Sectional Area (ft ²)	2.7	2.1	1.7	1.6	1.4	1.4		3.6	3.2	3.4	3.3	2.6	2.6	
Width/Depth Ratio	12.9	14.9	13.0	11.0	8.8	11.4		14.8	19.0	19.3	18.4	17.3	17.3	
Entrenchment Ratio	4.2	4.5	5.3	6.0	7.1	6.3		3.4	3.2	3.1	3.2	3.7	3.7	
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	
d50 (mm)														

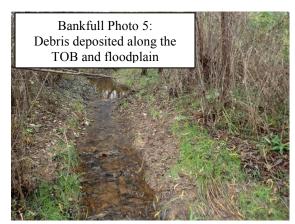
Table 11f. Monitoring Data - Stream Reach Data Summary
UT to Martin's Creek Mitigation Project - DMS Project Number 92766

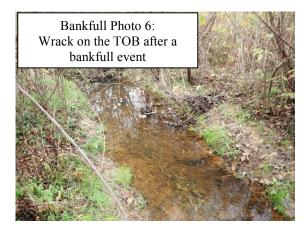
UT to Martin's Creek Mitigation Project	· DMS I	ŭ																								•				
Parameter		Base	eline (UT	1 - 3)			MY	-1 (UT 1	- 3)			M	Y-2 (UT 1	- 3)			MY	7-3 (UT 1	- 3)			M	Y-4 (UT 1	- 3)			M	Y-5 (UT 1	- 3)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)		6.6	6.6	7.3	1	5.6	6.7	6.7	7.8	1.6	4.7	6.4	6.4	8.1	2.4	4.2	6.0	6.0	7.8	2.5	3.5	5.1	5.1	6.7	2.3	4.0	5.4	5.4	6.7	1.9
Floodprone Width (ft)		25	25				25	25				25	25				25	25				25	25				25	25		
BF Mean Depth (ft)		0.5	0.5	0.5	0.1	0.4	0.4	0.4	0.4		0.4	0.4	0.4	0.4	0.0	0.4	0.4	0.4	0.4	0.0	0.4	0.4	0.4	0.4	0.0	0.3	0.4	0.4	0.4	0.1
BF Max Depth (ft)		1.0	1.0	1.0	0.1	0.7	0.8	0.8	0.8	0.1	0.7	0.9	0.9	1.0	0.2	0.8	0.9	0.9	0.9	0.1	0.6	0.7	0.7	0.8	0.1	0.6	0.7	0.7	0.7	0.1
BF Cross Sectional Area (ft ²)	2.7	3.2	3.2	3.6	0.6	2.1	2.7	2.7	3.2	0.8	1.7	2.6	2.6	3.4	1.2	1.6	2.5	2.5	3.3	1.2	1.4	2.0	2.0	2.6	0.8	1.4	2.0	2.0	2.6	0.8
Width/Depth Ratio	14.6	14.7	14.7	14.8	0.1	14.0	16.8	16.8	19.5	3.9	11.8	16.0	16.0	20.3	6.0	10.5	15.0	15.0	19.5	6.4	8.8	12.8	12.8	16.8	5.7	13.3	15.0	15.0	16.8	2.4
Entrenchment Ratio	3.4	3.8	3.8	4.2	0.6	3.2	3.8	3.8	4.5	0.9	3.1	4.2	4.2	5.3	1.6	3.2	4.6	4.6	6.0	1.9	3.7	5.4	5.4	7.1	2.4	3.7	5.0	5.0	6.3	1.8
Bank Height Ratio)	1.0	1.0				1.0	1.0				1.0	1.0				1.0	1.0				1.0	1.0				1.0	1.0		1
Profile - UT 1 - 3																														
Riffle length (ft)	4	41	22	173	44	4	34	30	147	35	8	27	18	138	30	2	22	12	122	27	4	25	17	151	31	3	15	10	61	14
Riffle slope (ft/ft)	0.0047	0.0318	0.0326	0.0913	0.0218	0.0139	0.0422	0.0324	0.1479	0.0353	0.0185	0.0413	0.0343	0.1077	0.0243	0.0091	0.0467	0.0337	0.1575	0.04	0.0047	0.0174	0.0159	0.0331	0.0130	0.0039	0.0346	0.0325	0.1023	0.0229
Pool length (ft)	5	12	7	50	11	4	11	8	31	8	5	11	8	21	5	3	8	8	16	3	4	10	8	38	7	5	11	8	43	8
Pool Max depth (ft)																														
Pool spacing (ft)	11	51	31	178	43	12	45	40	153	35	10	37	27	145	32	8	29	21	136	28	10	35	24	189	36	6	26	20	104	21
Pattern	=																													
Channel Beltwidth (ft))																													
Radius of Curvature (ft)																														
Rc:Bankfull width (ft/ft))																													
Meander Wavelength (ft))																													
Meander Width ratio)																													
Additional Reach Parameters	_																													
Rosgen Classification	1		C/E type					C/E type					C/E type					C/E type					C/E type					C/E type		
Channel Thalweg Length (ft))		813					814					822					838					832					837		
Sinuosity	7		1.08					1.08					1.08					1.08					1.08					1.08		
Water Surface Slope (Channel) (ft/ft)			0.0321					0.0321					0.0321					0.0317					NA					0.0317		
BF slope (ft/ft))																													
Ri%/RU%P%G%/S%	,																													
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95	5																													
% of Reach with Eroding Banks	S																													
Channel Stability or Habitat Metric																														
Biological or Other	•			_															_						_				_	

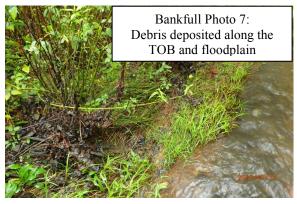
APPENDIX E HYDROLOGY DATA

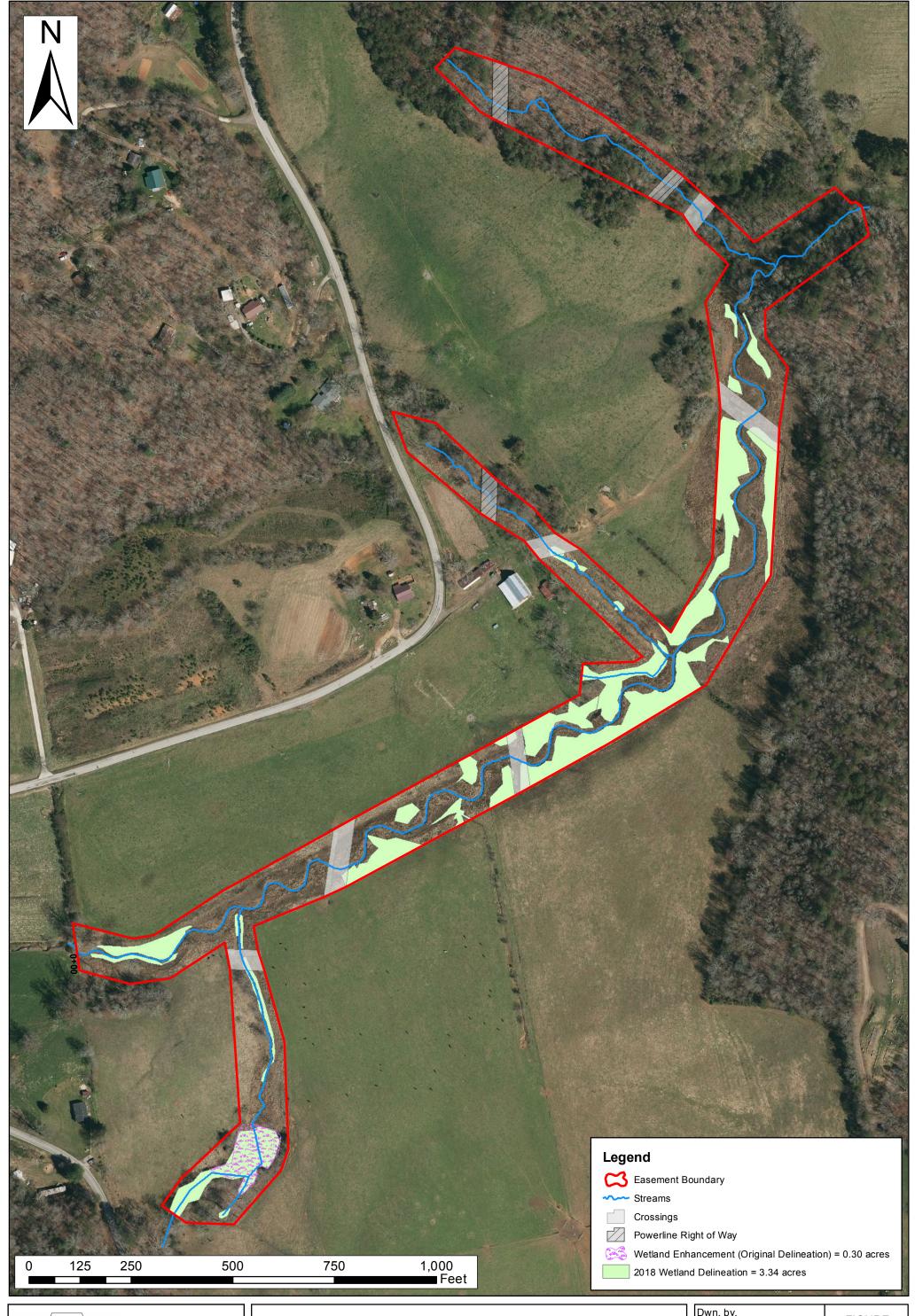
Table 12. Verification of Bankfull Events

Table 12. Verification of Bankfull Events UT to Martin's Creek (Contreras) Mitigation Site (DMS Project Number 92766)


	Creek (Contreras) N	Aitigation Site (DMS Project Number 92766)	
Date of Data Collection	Date of Occurrence	Method	Photo (if available)
August 25, 2014	April 7, 2014	Crest gauge data indicates a bankfull event after approximately 2.4 inches of rain documented in one day at a nearby rain gauge.	
August 25, 2014	July 1, 2014	Crest gauge data indicates a bankfull event after approximately 2.02 inches of rain was documented over two days at a nearby rain gauge.	
August 25, 2014	August 24, 2014	Crest gauge data indicates a bankfull event after approximately 1.39 inches of rain documented over two days at a nearby rain gauge. Wrack and laid-back vegetation were also observed.	1
October 27, 2014	September 3, 2014	Crest gauge data indicates a bankfull event after approximately 1.67 inches of rain documented in one day at a nearby rain gauge.	
October 27, 2014	October 14, 2014	Crest gauge data and wrack observed indicate a bankfull event after approximately 2.5 inches of rain documented in one day at a nearby rain gauge.	2
April 12, 2015	November 17, 2014	Crest gauge data indicates a bankfull event after approximately 1.44 inches of rain documented in one day at a nearby rain gauge.	
July 13, 2015	June 11, 2015	Crest gauge data and laid back vegetation in the floodplain of UT1 indicate a bankfull event after approximately 1.68 inches of rain documented in one day at a nearby rain gauge.	
July 13, 2015	June 26, 2015	Crest gauge data indicates a bankfull event after approximately 1.57 inches of rain was documented in one day at a nearby rain gauge.	3
September 11, 2015	August 19, 2015	Crest gauge data indicates a bankfull event after approximately 2.94 inches of rain was documented over three days at a nearby rain gauge.	
November 18, 2015	September 26, 2015	Crest gauge data indicates a bankfull event after approximately 2.65 inches of rain was documented over two days at a nearby rain gauge.	
November 18, 2015	October 3, 2015	Crest gauge data indicates a bankfull event after approximately 4.50 inches of rain was documented over three days at a nearby rain gauge.	
August 23, 2016	June 5, 2016	Crest gauge data and wrack on the TOB of UT1 indicate a bankfull event after approximately 2.28 inches of rain documented in two days at a nearby rain gauge.	4
November 8, 2017	October 8, 2017	Crest gauge data and the observation of debris along the floodplain of UT-1 indicate a bankfull event occurred after 1.97 inches of rain was documented at a nearby rain gauge.	5, 6
September 25, 2018	August 2, 2018	Crest gauge data indicates a bankfull event after approximately 3.47 inches of rain was documented over three days at a nearby rain gauge.	
September 25, 2018	August 11, 2018	Crest gauge data indicates a bankfull event after approximately 2.94 inches of rain was documented over three days at a nearby rain gauge.	
September 25, 2018	August 31, 2018	Crest gauge data indicates a bankfull event after an approximately 2.86-inch rain event documented over three days at a nearby rain gauge.	7







Axiom Environmental, Inc.

APPENDIX F WETLAND CONFIRMATION DATA

Figure 3. Wetland Confirmation Overview Wetland Forms

WETLAND CONFIRMATION OVERVIEW
UT TO MARTINS CREEK (CONTRERAS)
DMS PROJECT # 92766
Cherokee County, North Carolina

Dwn. by. KRJ	FIGURE
Date: Nov 2018	2
Project:	
12-004.16	

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: UT to Martins Creek (Contreras)	City/County: Murphy/C	Cherokee	Sampling Date: 180501
Applicant/Owner: NC DMS		State: NC	Sampling Point: PA_04up
Investigator(s): Perkinson - Keith Axiom	Section, Township, Range	: Murphy	
Landform (hillside, terrace, etc.): Floodplain	Local relief (concave, convex,	none): Convex	Slope (%): 6
Subregion (LRR or MLRA): LRR N, MLRA 130B Lat: 3	35.036511 Long:	-84.032705	Datum: WGS-84
Soil Map Unit Name: Arkaqua Loam 0-2% slopes occasi		NWI classificat	ion: UPL
Are climatic / hydrologic conditions on the site typical for t			explain in Remarks.)
Are Vegetation n , Soil n , or Hydrology n s		Circumstances" present?	
		plain any answers in Re	
Are Vegetation _n , Soil _n , or Hydrology _n _r			•
SUMMARY OF FINDINGS – Attach site map	showing sampling point locati	ons, transects, im	portant features, etc.
Hydrophytic Vegetation Present? Yes X	No Is the Sampled Area		
Hydric Soil Present? Yes X	No X within a Wetland?	Yes X	No
Wetland Hydrology Present? Yes X	No X		
Remarks:	•		
Just outside of floodplain bench along UT-1			
HYDROLOGY			
		Casandan, Indiantan	(i-i
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)		Surface Soil Crack	(minimum of two required)
Surface Water (A1) True Aquatic Plants (B14)			ed Concave Surface (B8)
<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Saturation (A3) Oxidized Rhizospheres on Living Roots (C3)		Drainage Patterns Moss Trim Lines (
Water Marks (B1) Presence of Reduced Iron (C4) Dry-Season Water Table (C2)			
Sediment Deposits (B2) Recent Iron Reduction in Tilled Soils (C6) Crayfish Burrows (C8)			
		on Aerial Imagery (C9)	
Algal Mat or Crust (B4) Other (Explain in Remarks) Stunted or Stressed Plants (D1)		=	
Iron Deposits (B5)	(- 2. - 1 1 1 1 1 1 1 1.	Geomorphic Posit	
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (, ,
Water-Stained Leaves (B9)		Microtopographic	` '
Aquatic Fauna (B13)		FAC-Neutral Test	, ,
Field Observations:			(- /
Surface Water Present? Yes No X	Depth (inches):		
Water Table Present? Yes No X			
Saturation Present? Yes No X	· · · · · · · · · · · · · · · · · · ·	Hydrology Present?	Yes No X
(includes capillary fringe)	· · · · · ·		
Describe Recorded Data (stream gauge, monitoring well	, aerial photos, previous inspections), if a	vailable:	
Remarks:			
Upland			

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: PA_04up Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: 30) % Cover Species? Status **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 25.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: 20% of total cover: 50% of total cover: **OBL** species x 1 = Sapling/Shrub Stratum (Plot size: 15 **FACW** species x 2 = 0 Alnus serrulata 1. FAC species x 3 = 10 x 4 = 2. **FACU** species 3. UPL species 0 x 5 = 0 (B) 4. Column Totals: 40 (A) 70 Prevalence Index = B/A = 1 75 5. 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation 8. 2 - Dominance Test is >50% 9. X 3 - Prevalence Index is ≤3.0¹ 4 - Morphological Adaptations¹ (Provide supporting 30 =Total Cover data in Remarks or on a separate sheet) 50% of total cover: 15 20% of total cover: 6 Herb Stratum (Plot size: 5) Problematic Hydrophytic Vegetation¹ (Explain) 1. Carex ¹Indicators of hydric soil and wetland hydrology must be 2. Rubus sp Yes present, unless disturbed or problematic. Yes 3. Soldago 20 **Definitions of Four Vegetation Strata:** 4. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. height. 6. 7. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft 8. (1 m) tall. 9. **Herb** – All herbaceous (non-woody) plants, regardless 10. of size, and woody plants less than 3.28 ft tall. =Total Cover Woody Vine - All woody vines greater than 3.28 ft in 50% of total cover: 13 20% of total cover: Woody Vine Stratum (Plot size: 30) 1. Lonicera japonica 10 2. 3. 4 Hydrophytic 10 =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? Yes X No Remarks: (Include photo numbers here or on a separate sheet.)

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point: PA_04up Absolute Dominant Indicator Status <u>Tree Stratum</u> (Plot size: % Cover Species? **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: 50% of total cover: 20% of total cover: Multiply by: Sapling Stratum (Plot size:) OBL species x 1 = ____ FACW species x 2 = FAC species x 3 = 3. FACU species x 4 = 4. UPL species x 5 = Column Totals: (B) (A) Prevalence Index = B/A = =Total Cover **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation 50% of total cover: 20% of total cover: Shrub Stratum (Plot size:) 2 - Dominance Test is >50% 1. 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 3. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. =Total Cover **Definitions of Five Vegetation Strata:** 50% of total cover: 20% of total cover: Tree - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. Herb Stratum (Plot size:) (7.6 cm) or larger in diameter at breast height (DBH). 1. 2. Sapling - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less 3. than 3 in. (7.6 cm) DBH. 5. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 6. 7. Herb - All herbaceous (non-woody) plants, including 8. herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 9. 3 ft (1 m) in height. 10. Woody Vine - All woody vines, regardless of height. =Total Cover 20% of total cover: 50% of total cover: Woody Vine Stratum (Plot size: 4. Hydrophytic =Total Cover Vegetation 20% of total cover: Present? 50% of total cover: Yes No Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point: PA_04up

	ription: (Describe t	o the dep				ator or co	onfirm the abs	ence of inc	licators.)	
Depth	Matrix			K Featur		. 2	- .		5	
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture		Rem	narks
0-10	10yr 5/3	80	10yr 5/6	20	<u>D</u>	<u>M</u>	Loamy/Clay			
10-12	10yr 5/4	100					Loamy/Clay	/ey		
			_							
¹ Type: C=Co	oncentration, D=Depl	etion, RM	=Reduced Matrix, M	1S=Mas	ked Sand	d Grains.	² Lo	cation: PL:	=Pore Lining, N	∕I=Matrix.
Hydric Soil	Indicators:							Indicators	for Problema	atic Hydric Soils ³ :
Histosol			Polyvalue Be			-	-		Muck (A10) (M	•
	pipedon (A2)		Thin Dark Su	•	, ,		•		Prairie Redox	(A16)
Black Hi	` '		Loamy Muck	-		ILRA 136	6)	-	RA 147, 148)	
	n Sulfide (A4)		Loamy Gleye						ont Floodplain	Soils (F19)
	Layers (A5)		Depleted Ma					-	RA 136, 147)	(E04)
	ick (A10) (LRR N) d Below Dark Surface	(111)	Redox Dark Depleted Da						arent Material side MLRA 12	
	ark Surface (A12)	(A11)	Redox Depre					-	Shallow Dark S	-
	lucky Mineral (S1)		Iron-Mangan			2) (LRR N	J.		(Explain in Re	
	sleyed Matrix (S4)		MLRA 136			-/ (-	-,		(=/(p.a	a.r.o,
	edox (S5)		Umbric Surfa	•	B) (MLRA	122, 136	5)	³ Indicators	of hydrophytic	vegetation and
	Matrix (S6)		Piedmont Flo				-			ust be present,
Dark Su	rface (S7)		Red Parent I	Material	(F21) (M	LRA 127	, 147, 148)	unless	s disturbed or p	roblematic.
Restrictive I	Layer (if observed):									
Type:										
Depth (ir	nches):						Hydric Soil	Present?	Yes	NoX
	eet is revised from Ea	astern Mo	untains and Piedmo	nt Regi	onal Sup	plement \	Version 2.0 to i	nclude the N	NRCS Field Inc	licators of Hydric
Soils, Versio	n 8.0, 2016. oodplain bench along	r left hank	or LIT-1							
LACAVAICA	odpiani benen along	j icit barii	. 01 01-1							

Project/Site: UT to Martins Creek (Contreras	s)	City/County: Murph	y/Cherokee	Sampling Date: 180501	
Applicant/Owner: NC DMS			State: NC	Sampling Point: PA_04w	
Investigator(s): Perkinson - Keith Axiom		Section, Township, Ran	ge: Murphy	_	
Landform (hillside, terrace, etc.): Floodplain	Lo	cal relief (concave, conv		Slope (%): 6	
Subregion (LRR or MLRA): LRR N, MLRA 13	_	•	g: -84.032705	Datum: WGS-84	
					
Soil Map Unit Name: Arkaqua Loam 0-2% sk	· ·		NWI classifica		
Are climatic / hydrologic conditions on the site				explain in Remarks.)	
Are Vegetationn_, Soiln_, or Hydrolo			al Circumstances" present	t? Yes X No	
Are Vegetation, Soil, or Hydrole	ogy <u>n</u> naturally probl	ematic? (If needed,	explain any answers in R	emarks.)	
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point loca	ations, transects, in	nportant features, etc.	
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area			
	Yes X No	within a Wetland?	Yes X	No	
	Yes X No			- <u> </u>	
Remarks:					
Floodplain bench collecting runoff from adjac	ent pasture via small crer	nulation, also receives ov	erbank flooding suring sto	orm events	
HYDROLOGY					
Wetland Hydrology Indicators:			Secondary Indicators	s (minimum of two required)	
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Cra	cks (B6)	
X Surface Water (A1)	True Aquatic Plants	(B14)	Sparsely Vegeta	ted Concave Surface (B8)	
X High Water Table (A2)	Hydrogen Sulfide Oc		Drainage Pattern		
X Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines		
Water Marks (B1)	Presence of Reduce				
Sediment Deposits (B2)		on in Tilled Soils (C6)	Crayfish Burrows	· ·	
Drift Deposits (B3)	Thin Muck Surface (e on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	Other (Explain in Re		Stunted or Stress	=	
Iron Deposits (B5)		,	Geomorphic Pos	i i	
Inundation Visible on Aerial Imagery (B7))		Shallow Aquitard		
Water-Stained Leaves (B9)			Microtopographic		
Aquatic Fauna (B13)			X FAC-Neutral Tes	· ·	
Field Observations:					
Surface Water Present? Yes X	No Depth (inch	es): 1			
Water Table Present? Yes X	No Depth (inch	· ——			
Saturation Present? Yes X	No Depth (inch	· — —	nd Hydrology Present?	Yes X No	
(includes capillary fringe)		· ——			
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos	s, previous inspections),	if available:		
Remarks:					
Bankfull bench on 2nd order stream per NCV	√AM				

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: PA_04w Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: 30) % Cover Species? Status **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: 20% of total cover: 50% of total cover: **OBL** species x 1 = Sapling/Shrub Stratum (Plot size: 15 **FACW** species 30 x 2 = Alnus serrulata 0 1. OBL FAC species x 3 = 0 2. Salix sericea Yes OBL **FACU** species x 4 = 3. UPL species 0 x 5 = 0 (B) 4. Column Totals: 80 (A) 110 5. Prevalence Index = B/A = 1.38 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation 8. X 2 - Dominance Test is >50% X 3 - Prevalence Index is ≤3.0¹ 9. 4 - Morphological Adaptations¹ (Provide supporting 50 =Total Cover 50% of total cover: 25 20% of total cover: data in Remarks or on a separate sheet) Herb Stratum (Plot size: 5) Problematic Hydrophytic Vegetation¹ (Explain) 1. Carex ¹Indicators of hydric soil and wetland hydrology must be 2. Rubus sp No present, unless disturbed or problematic. Yes 3. Juncus effusus 20 **FACW Definitions of Four Vegetation Strata:** 4. 10 Impatiens capensis Yes **FACW** Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. height. 6. 7. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft 8. (1 m) tall. 9. **Herb** – All herbaceous (non-woody) plants, regardless 10. of size, and woody plants less than 3.28 ft tall. =Total Cover Woody Vine - All woody vines greater than 3.28 ft in 50% of total cover: 18 20% of total cover: Woody Vine Stratum (Plot size: 30) 1. 2. 3. 4 Hydrophytic =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? Yes X No Remarks: (Include photo numbers here or on a separate sheet.)

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point: PA_04w Absolute Dominant Indicator Status <u>Tree Stratum</u> (Plot size: % Cover Species? **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: 50% of total cover: 20% of total cover: Multiply by: Sapling Stratum (Plot size:) OBL species x 1 = ____ FACW species x 2 = FAC species x 3 = 3. FACU species x 4 = 4. UPL species x 5 = Column Totals: (B) (A) Prevalence Index = B/A = =Total Cover **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation 50% of total cover: 20% of total cover: Shrub Stratum (Plot size:) 2 - Dominance Test is >50% 1. 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 3. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. =Total Cover **Definitions of Five Vegetation Strata:** 50% of total cover: 20% of total cover: Tree - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. Herb Stratum (Plot size:) (7.6 cm) or larger in diameter at breast height (DBH). 1. 2. Sapling - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less 3. than 3 in. (7.6 cm) DBH. 5. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 6. 7. Herb - All herbaceous (non-woody) plants, including 8. herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 9. 3 ft (1 m) in height. 10. Woody Vine - All woody vines, regardless of height. =Total Cover 20% of total cover: 50% of total cover: Woody Vine Stratum (Plot size: 4. Hydrophytic =Total Cover Vegetation

20% of total cover:

50% of total cover:

Remarks: (Include photo numbers here or on a separate sheet.)

No

Present?

Yes

SOIL Sampling Point: PA_04w

Profile Desc	cription: (Describe t	o the dep	th needed to docu	ıment tl	ne indica	tor or co	onfirm the absence of	of indicators.)
Depth	Matrix	·		k Featur				·
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10yr 6/3	80	10yr 4/2	20	D	М	Loamy/Clayey	
4-9	10yr 6/2	80	10yr 4/1	20	D	PL/M	Loamy/Clayey	
9-12	10yr 5/1	90	10yr 5/6	10	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations
¹ Type: C=C	oncentration, D=Deple	etion, RM	=Reduced Matrix, M	1S=Mas	ked Sand	Grains.	² Location	: PL=Pore Lining, M=Matrix.
Hydric Soil	•	,	,					eators for Problematic Hydric Soils ³ :
Histosol			Polyvalue Be	low Sur	face (S8	(MLRA		2 cm Muck (A10) (MLRA 147)
	pipedon (A2)		Thin Dark Su			-		Coast Prairie Redox (A16)
	istic (A3)		Loamy Muck					(MLRA 147, 148)
	en Sulfide (A4)		Loamy Gleye				-	Piedmont Floodplain Soils (F19)
	d Layers (A5)		X Depleted Ma				 -	(MLRA 136, 147)
	uck (A10) (LRR N)		Redox Dark				F	Red Parent Material (F21)
	d Below Dark Surface	(Δ11)	Depleted Da				<u>—</u> '	(outside MLRA 127, 147, 148)
	ark Surface (A12)	(7(1)	Redox Depre				,	/ery Shallow Dark Surface (F22)
	Mucky Mineral (S1)		Iron-Mangan) /I PP N		Other (Explain in Remarks)
	Gleyed Matrix (S4)		MLRA 136		3303 (1 12	<u> </u>		other (Explain in Remarks)
	Redox (S5)		Umbric Surfa	-	1) (MI PA	122 136	3Indic	cators of hydrophytic vegetation and
	Matrix (S6)		Piedmont Flo		-		-	vetland hydrology must be present,
	rface (S7)		Red Parent N				-	inless disturbed or problematic.
			Red Falenti	viateriai	(1 Z 1) (1VI	LNA 121	, 147, 140 <i>)</i>	inless disturbed or problematic.
	Layer (if observed):							
Type:								10 Y Y
Depth (i	nches):						Hydric Soil Prese	nt? Yes X No
Soils, Version				nt Regio	onal Sup	olement '	Version 2.0 to include	the NRCS Field Indicators of Hydric
1								

Project/Site: UT to Martins (Contreras)	City/County: Murphy	/Cherokee Sampling Date: 180501
Applicant/Owner: NC DMS		State: NC Sampling Point: PB_01up
Investigator(s): Perkinson - Keith Axiom	Section, Township, Rang	ge: Murphy
Landform (hillside, terrace, etc.): Floodplain	Local relief (concave, conve	xx, none): Convex Slope (%): 3
Subregion (LRR or MLRA): LRR N, MLRA 13	DB Lat: 35.036140 Long	: -84.032708 Datum: WGS-84
Soil Map Unit Name: Arkaqua Loam 0-2% slo		NWI classification: UPL
Are climatic / hydrologic conditions on the site	•	No (If no, explain in Remarks.)
Are Vegetation N , Soil N , or Hydrolo		I Circumstances" present? Yes X No
Are Vegetation N , Soil N , or Hydrold		explain any answers in Remarks.)
		tions, transects, important features, etc.
Hydric Soil Present?	Yes No X Yes No X Yes No X Is the Sampled Area within a Wetland?	Yes NoX_
Remarks:		
LINDROLOGY		
HYDROLOGY		
Wetland Hydrology Indicators: Primary Indicators (minimum of one is require	d: check all that apply)	Secondary Indicators (minimum of two required)
Surface Water (A1)	True Aquatic Plants (B14)	Surface Soil Cracks (B6) Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)
Saturation (A3)	Oxidized Rhizospheres on Living Roots (C3)	Moss Trim Lines (B16)
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils (C6)	Crayfish Burrows (C8)
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)		Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)
Water-Stained Leaves (B9)		Microtopographic Relief (D4)
Aquatic Fauna (B13)		X FAC-Neutral Test (D5)
Field Observations:		
	No X Depth (inches):	
	No X Depth (inches):	
		d Hydrology Present? Yes No X
(includes capillary fringe)	<u> </u>	<u> </u>
	itoring well, aerial photos, previous inspections), if	available:
Remarks: Upland		

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: PB_01up Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: 30) % Cover Species? Status **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 3 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 33.3% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: 20% of total cover: 50% of total cover: **OBL** species 20 x 1 = Sapling/Shrub Stratum (Plot size: 15 **FACW** species x 2 = Alnus serrulata 0 1. FAC species x 3 = 0 2. FACU species x 4 = 3. UPL species 0 x 5 = 0 (B) 4. Column Totals: 25 (A) 30 Prevalence Index = B/A = 1 20 5. 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation 8. 2 - Dominance Test is >50% 9. 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations¹ (Provide supporting 20 =Total Cover data in Remarks or on a separate sheet) 50% of total cover: 10 20% of total cover: Herb Stratum (Plot size: 5) Problematic Hydrophytic Vegetation¹ (Explain) 1. Juncus effusus FACW ¹Indicators of hydric soil and wetland hydrology must be 30 2. Rubus Yes present, unless disturbed or problematic. 3. Soldago 10 Yes **Definitions of Four Vegetation Strata:** 4. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. 6. 7. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft 8. (1 m) tall. 9. **Herb** – All herbaceous (non-woody) plants, regardless 10. of size, and woody plants less than 3.28 ft tall. =Total Cover Woody Vine - All woody vines greater than 3.28 ft in 50% of total cover: 23 20% of total cover: Woody Vine Stratum (Plot size: 30) 1. 2. 3. 4 Hydrophytic =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? No X Remarks: (Include photo numbers here or on a separate sheet.) Wetland and Stream mitigation site

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point: PB_01up Absolute Dominant Indicator Status <u>Tree Stratum</u> (Plot size: % Cover Species? **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: 50% of total cover: 20% of total cover: Multiply by: Sapling Stratum (Plot size:) OBL species x 1 = ____ FACW species x 2 = FAC species x 3 = 3. FACU species x 4 = 4. UPL species x 5 = Column Totals: (B) (A) Prevalence Index = B/A = =Total Cover **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation 50% of total cover: 20% of total cover: Shrub Stratum (Plot size:) 2 - Dominance Test is >50% 1. 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 3. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. =Total Cover **Definitions of Five Vegetation Strata:** 50% of total cover: 20% of total cover: Tree - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. Herb Stratum (Plot size:) (7.6 cm) or larger in diameter at breast height (DBH). 1. 2. Sapling - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less 3. than 3 in. (7.6 cm) DBH. 5. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 6. 7. Herb - All herbaceous (non-woody) plants, including 8. herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 9. 3 ft (1 m) in height. 10. Woody Vine - All woody vines, regardless of height. =Total Cover 20% of total cover: 50% of total cover: Woody Vine Stratum (Plot size: 4. Hydrophytic =Total Cover Vegetation 20% of total cover: Present? 50% of total cover: Yes No X

Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point: PB_01up

	ription: (Describe to	o the de				tor or co	onfirm the ab	sence of indi	cators.)	
Depth (inches)	Matrix Color (moist)	%	Color (moist)	x Featur	res Type ¹	Loc ²	Texture		Pon	narks
	Color (moist)		Color (moist)	-70	Туре	LUC		1	Ken	iiaiks
0-12	10yr 5/3	80					Loamy/Cla	yey		
¹ Type: C=Co	ncentration, D=Deple	etion, RM	=Reduced Matrix, N	1S=Mas	ked Sand	d Grains.	² L	ocation: PL=	Pore Lining, I	M=Matrix.
Hydric Soil I	ndicators:							Indicators	for Problem	atic Hydric Soils ³ :
Histosol ((A1)		Polyvalue Be	elow Su	rface (S8	(MLRA	147, 148)	2 cm M	luck (A10) (M	ILRA 147)
Histic Ep	ipedon (A2)		Thin Dark S				-	Coast F	Prairie Redox	(A16)
Black His			Loamy Muck	•	, , ,	ILRA 136	5)	(MLR	RA 147, 148)	
	n Sulfide (A4)		Loamy Gley					Piedmo	ont Floodplair	n Soils (F19)
	Layers (A5)		Depleted Ma					-	RA 136, 147)	
	ck (A10) (LRR N)		Redox Dark		, ,				rent Material	
	Below Dark Surface	(A11)	Depleted Da		. ,			•		27, 147, 148)
	rk Surface (A12)		Redox Depre							Surface (F22)
	ucky Mineral (S1)		Iron-Mangar		sses (F12	2) (LKK I	١,	Otner (Explain in Re	emarks)
	leyed Matrix (S4) edox (S5)		MLRA 136 Umbric Surfa		3) (MI D A	122 136	:1	3Indicators	of hydronhyti	c vegetation and
	Matrix (S6)		Piedmont Fl				-			nust be present,
Dark Sur			Red Parent				-		disturbed or p	-
	.ayer (if observed):				()		, , ,			
Type:	, (
Depth (in	ches):						Hydric Soi	I Present?	Yes	No X
Remarks:	, .									
outside of floo	odplain									

Project/Site: UT to Martins (Contreras)	City/County: Murp	hy/Cherokee	Sampling Date: 180501		
Applicant/Owner: NC DMS		State: NC	Sampling Point: PG_11up		
Investigator(s): Perkinson - Keith Axiom	Section, Township, Ra	ange: Murphy			
Landform (hillside, terrace, etc.): Floodplain	Local relief (concave, con	nvex, none): Convex	Slope (%): 3		
Subregion (LRR or MLRA): LRR N, MLRA 13	0B Lat: 35.035755, Lc	ong: -84.032536	Datum: WGS-84		
Soil Map Unit Name: Arkaqua Loam 0-2% slo		NWI classifica	tion: Upland		
Are climatic / hydrologic conditions on the site	•		explain in Remarks.)		
Are Vegetationn_, Soiln_, or Hydrole		mal Circumstances" present?			
Are Vegetation, Soil, or Hydrole	ogy n naturally problematic? (If needed	d, explain any answers in Re	emarks.)		
SUMMARY OF FINDINGS – Attach	site map showing sampling point lo	cations, transects, im	portant features, etc.		
Hydric Soil Present?	Yes X No Is the Sampled Area Yes X No within a Wetland?	a Yes <u>X</u>	No		
HYDROLOGY					
Wetland Hydrology Indicators:		•	(minimum of two required)		
Primary Indicators (minimum of one is require	., .,	Surface Soil Crac	` '		
Surface Water (A1) High Water Table (A2)	True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1)	Drainage Patterns	ed Concave Surface (B8)		
Saturation (A3)	Oxidized Rhizospheres on Living Roots (C3				
Water Marks (B1)	Presence of Reduced Iron (C4)		Dry-Season Water Table (C2)		
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils (C6)	Crayfish Burrows			
Drift Deposits (B3)	Thin Muck Surface (C7)		on Aerial Imagery (C9)		
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stress	ed Plants (D1)		
Iron Deposits (B5)		X Geomorphic Posit	tion (D2)		
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard	(D3)		
Water-Stained Leaves (B9)		Microtopographic			
Aquatic Fauna (B13)		X FAC-Neutral Test	(D5)		
Field Observations:					
Surface Water Present? Yes Water Table Present? Yes	No X Depth (inches):				
Water Table Present? Yes	No X Depth (inches):				
Saturation Present? Yes	No X Depth (inches): Wetl	and Hydrology Present?	Yes <u>X</u> No		
(includes capillary fringe)	sitering well coried whether provide a increasions.) if available.			
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous inspections)	, ii avaliabie.			
Remarks:					
Upland outside of depression in floodplain					
•					

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: PG_11up Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: 30) % Cover Species? Status **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 3 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 66.7% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: 20% of total cover: 50% of total cover: **OBL** species 30 x 1 = Sapling/Shrub Stratum (Plot size: 15 **FACW** species x 2 = Alnus serrulata 0 1. OBL FAC species x 3 = 10 0 2. Salix sericea Yes FACU species x 4 = 3. UPL species 0 0 x 5 = (B) 4. Column Totals: 30 (A) 30 5. Prevalence Index = B/A = 1 00 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation 8. X 2 - Dominance Test is >50% 9. X 3 - Prevalence Index is ≤3.0¹ 4 - Morphological Adaptations¹ (Provide supporting 30 =Total Cover data in Remarks or on a separate sheet) 50% of total cover: 15 20% of total cover: 6 Herb Stratum (Plot size:) Problematic Hydrophytic Vegetation¹ (Explain) ____10 Yes 1. Soldago ¹Indicators of hydric soil and wetland hydrology must be 2. present, unless disturbed or problematic. 3. **Definitions of Four Vegetation Strata:** 4. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. height. 6. 7. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft 8. (1 m) tall. 9. **Herb** – All herbaceous (non-woody) plants, regardless 10. of size, and woody plants less than 3.28 ft tall. =Total Cover Woody Vine - All woody vines greater than 3.28 ft in 50% of total cover: 5 20% of total cover: Woody Vine Stratum (Plot size:) 1. 2. 3. 4 Hydrophytic =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? Yes X No Remarks: (Include photo numbers here or on a separate sheet.) Stream and wetland mitigation site

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point: PG_11up Absolute Dominant Indicator Status <u>Tree Stratum</u> (Plot size: % Cover Species? **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: 50% of total cover: 20% of total cover: Multiply by: Sapling Stratum (Plot size:) OBL species x 1 = ____ FACW species x 2 = FAC species x 3 = 3. FACU species x 4 = 4. UPL species x 5 = Column Totals: (B) (A) Prevalence Index = B/A = =Total Cover **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation 50% of total cover: 20% of total cover: Shrub Stratum (Plot size:) 2 - Dominance Test is >50% 1. 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 3. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. =Total Cover **Definitions of Five Vegetation Strata:** 50% of total cover: 20% of total cover: Tree - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. Herb Stratum (Plot size:) (7.6 cm) or larger in diameter at breast height (DBH). 1. 2. Sapling - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less 3. than 3 in. (7.6 cm) DBH. 5. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 6. 7. Herb - All herbaceous (non-woody) plants, including 8. herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 9. 3 ft (1 m) in height. 10. Woody Vine - All woody vines, regardless of height. =Total Cover 20% of total cover: 50% of total cover: Woody Vine Stratum (Plot size: 4. Hydrophytic =Total Cover Vegetation

20% of total cover:

50% of total cover:

Remarks: (Include photo numbers here or on a separate sheet.)

No

Present?

Yes

SOIL Sampling Point: PG_11up

Profile Desc	cription: (Describe to	o the dep	th needed to docu	ment t	he indica	ator or co	onfirm the absence	e of indic	ators.)
Depth	Matrix		Redox	(Featur	es				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks
0-6	10yr 5/4	90	10yr 5/6	10	С	M	Loamy/Clayey	Di	stinct redox concentrations
6-12	10yr 5/4	95	10yr 5/6	5	C	<u>m</u>	Loamy/Clayey	Di	stinct redox concentrations
	·							_	
								_	
¹ Type: C=C	oncentration, D=Deple	ation RM-	-Reduced Matrix M		ked Sand		² l ocatio	on: PI –P	ore Lining, M=Matrix.
Hydric Soil		Stiori, ixivi-	-rreduced Matrix, M	io–ivias	Keu Jane	J Granis.			or Problematic Hydric Soils ³ :
_			Dobavoluo Po	low Sur	food (CO)	/MI DA			
Histosol			Polyvalue Be			-		_	uck (A10) (MLRA 147)
	pipedon (A2)		Thin Dark Su	•	, .			_	rairie Redox (A16) A 147, 148)
	istic (A3)		Loamy Muck			ILRA 130	o)	•	· · ·
	en Sulfide (A4)		Loamy Gleye					_	nt Floodplain Soils (F19)
	d Layers (A5)		Depleted Mar					-	A 136, 147)
	uck (A10) (LRR N)	(111)	Redox Dark S Depleted Dar					_	ent Material (F21) de MLRA 127, 147, 148)
	d Below Dark Surface ark Surface (A12)	(A11)	X Redox Depre		, ,			-	allow Dark Surface (F22)
	Mucky Mineral (S1)		Iron-Mangan			o) /I DD I			Explain in Remarks)
	Gleyed Matrix (S4)		MLRA 136		3363 (1 12	2) (L IXIX I		_Other (L	Apiain in Kemarks)
	Redox (S5)		Umbric Surfa		R) (MI RA	122 136	3ln	dicators of	f hydrophytic vegetation and
	Matrix (S6)		Piedmont Flo				-		hydrology must be present,
	rface (S7)		Red Parent N						listurbed or problematic.
	Layer (if observed):			natorial	(. 2.) (, , , I	4111000 4	iotarboa or problematic.
Type:	Layer (ii observeu).								
Depth (i	nches).						Hydric Soil Pre	sant?	Yes X No
, ,							i riyane don rite	301111	
Soils, Version			ıntains and Piedmo	nt Regi	onal Sup _l	plement '	Version 2.0 to inclu	de the NR	CS Field Indicators of Hydric

Project/Site: UT to Martins (Contreras)	City/County: Murphy/	Cherokee S	Sampling Date: 180501
Applicant/Owner: NC DMS		State: NC S	Sampling Point: PG_11w
Investigator(s): Perkinson - Keith Axiom	Section, Township, Range	: Murphy	
Landform (hillside, terrace, etc.): Floodplain	Local relief (concave, convex	, none): Convex	Slope (%): 3
Subregion (LRR or MLRA): LRR N, MLRA 130B L	.at: 35.035755, Long:	-84.032536	Datum: WGS-84
Soil Map Unit Name: Arkaqua Loam 0-2% slopes o	ccasionally flooded	NWI classificatio	on: BHWF
Are climatic / hydrologic conditions on the site typica	· · · · · · · · · · · · · · · · · · ·		plain in Remarks.)
Are Vegetation n , Soil n , or Hydrology		Circumstances" present?	Yes X No
Are Vegetation n , Soil n , or Hydrology	n naturally problematic? (If needed, e.	cplain any answers in Rem	narks.)
SUMMARY OF FINDINGS – Attach site	— map showing sampling point locat	ions, transects, imp	ortant features, etc.
Hydric Soil Present? Yes	X No Is the Sampled Area within a Wetland?	Yes X	No
Remarks:			
HYDROLOGY			
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; che	ock all that apply)	-	ninimum of two required)
	rue Aquatic Plants (B14)	Surface Soil Cracks Sparsely Vegetated	l Concave Surface (B8)
	ydrogen Sulfide Odor (C1)	Drainage Patterns (
	xidized Rhizospheres on Living Roots (C3)	Moss Trim Lines (B	
	resence of Reduced Iron (C4)	Dry-Season Water	
	ecent Iron Reduction in Tilled Soils (C6)	Crayfish Burrows (C	
Drift Deposits (B3)	nin Muck Surface (C7)	Saturation Visible o	n Aerial Imagery (C9)
Algal Mat or Crust (B4)	ther (Explain in Remarks)	Stunted or Stressed	d Plants (D1)
Iron Deposits (B5)		X Geomorphic Positio	on (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D	03)
Water-Stained Leaves (B9)		Microtopographic Ro	
Aquatic Fauna (B13)		X FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes No Water Table Present? Yes No Saturation Present? Yes X No	X Depth (inches):		
Water Table Present? Yes No	X Depth (inches):		
	Depth (inches): 5 Wetland	Hydrology Present?	Yes X No
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring	well parial photos provious inspections) if		
Describe Recorded Data (Stream gauge, monitoring	y well, aeriai priotos, previous irispectioris), ii d	ivaliable.	
Remarks:			
Remarks.			

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: PG_11w Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: 30) % Cover Species? Status **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 2 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: 20% of total cover: 50% of total cover: **OBL** species 30 x 1 = Sapling/Shrub Stratum (Plot size: 15 **FACW** species 40 x 2 = 0 1. Alnus serrulata OBL FAC species x 3 = 5 x 4 = 2. Cornus amomum **FACW FACU** species 20 3. Rosa multiflora 5 Nο **FACU** UPL species 0 x 5 = 0 4. Column Totals: 75 (A) 130 (B) 5. Prevalence Index = B/A = 1 73 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation 8. X 2 - Dominance Test is >50% 9. X 3 - Prevalence Index is ≤3.0¹ 4 - Morphological Adaptations¹ (Provide supporting 40 =Total Cover data in Remarks or on a separate sheet) 50% of total cover: 20 20% of total cover: 8 Herb Stratum (Plot size:) Problematic Hydrophytic Vegetation¹ (Explain) 1. Juncus effusus 30 Yes **FACW** ¹Indicators of hydric soil and wetland hydrology must be 5 2. Solidago No present, unless disturbed or problematic. No 3. Agrimonia parviflora 5 **FACW Definitions of Four Vegetation Strata:** 4. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. height. 6. 7. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft 8. (1 m) tall. 9. Herb - All herbaceous (non-woody) plants, regardless 10. of size, and woody plants less than 3.28 ft tall. =Total Cover Woody Vine - All woody vines greater than 3.28 ft in 50% of total cover: 20 20% of total cover: Woody Vine Stratum (Plot size:) 1. 2. 3. 4 Hydrophytic =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? Yes X No Remarks: (Include photo numbers here or on a separate sheet.) Stream and wetland mitigation site

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point: PG_11w Absolute Dominant Indicator Status <u>Tree Stratum</u> (Plot size: % Cover Species? **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: 50% of total cover: 20% of total cover: Multiply by: Sapling Stratum (Plot size:) OBL species x 1 = ____ FACW species x 2 = FAC species x 3 = 3. FACU species x 4 = 4. UPL species x 5 = Column Totals: (B) (A) Prevalence Index = B/A = =Total Cover **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation 50% of total cover: 20% of total cover: Shrub Stratum (Plot size:) 2 - Dominance Test is >50% 1. 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 3. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. =Total Cover **Definitions of Five Vegetation Strata:** 50% of total cover: 20% of total cover: Tree - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. Herb Stratum (Plot size:) (7.6 cm) or larger in diameter at breast height (DBH). 1. 2. Sapling - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less 3. than 3 in. (7.6 cm) DBH. 5. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 6. 7. Herb - All herbaceous (non-woody) plants, including 8. herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 9. 3 ft (1 m) in height. 10. Woody Vine - All woody vines, regardless of height. =Total Cover 20% of total cover: 50% of total cover: Woody Vine Stratum (Plot size:

=Total Cover

20% of total cover:

Remarks: (Include photo numbers here or on a separate sheet.)

50% of total cover:

4.

No

Hydrophytic

Vegetation

Yes

Present?

SOIL Sampling Point: PG_11w

	ription: (Describe t	o the de				ator or c	onfirm the absenc	e of indicators.)
Depth	Matrix	0/		x Featur		Loc ²	Tarduna	Damada
(inches)	Color (moist)	90	Color (moist)	<u>%</u>	Type ¹	M	Texture	Remarks Distinct rodey concentrations
0-8	10yr 5/4		10yr 5/6	10	<u>C</u>	IVI	Loamy/Clayey	Distinct redox concentrations
8-12	10yr 5/3	100					Loamy/Clayey	
								_
								_
¹ Type: C=Co	ncentration, D=Deple	etion, RM	=Reduced Matrix, M	 IS=Mas	ked Sand	d Grains.	² Locati	ion: PL=Pore Lining, M=Matrix.
Hydric Soil II								dicators for Problematic Hydric Soils
Histosol ((A1)		Polyvalue Be	low Sur	rface (S8	(MLRA	147, 148)	_2 cm Muck (A10) (MLRA 147)
Histic Epi	pedon (A2)		Thin Dark Su	urface (S	89) (MLR	A 147, 1	48)	Coast Prairie Redox (A16)
Black His			Loamy Muck			ILRA 130	6)	(MLRA 147, 148)
	Sulfide (A4)		Loamy Gleye					Piedmont Floodplain Soils (F19)
	Layers (A5)		Depleted Ma					(MLRA 136, 147)
	ck (A10) (LRR N)	(444)	Redox Dark					Red Parent Material (F21) (outside MLRA 127, 147, 148)
	Below Dark Surface rk Surface (A12)	(A11)	Depleted Da					Very Shallow Dark Surface (F22)
	ucky Mineral (S1)		Iron-Mangan			2) (LRR I		Other (Explain in Remarks)
	eyed Matrix (S4)		MLRA 136		(-, (· —	
Sandy Re			Umbric Surfa	ace (F13	B) (MLRA	122, 130	6) 3In	ndicators of hydrophytic vegetation and
Stripped	Matrix (S6)		Piedmont Flo	oodplain	Soils (F	19) (MLR	A 148)	wetland hydrology must be present,
Dark Surf	face (S7)		Red Parent N	Material	(F21) (M	LRA 127	, 147, 148)	unless disturbed or problematic.
Restrictive L	ayer (if observed):							
Type:								
Depth (in	ches):						Hydric Soil Pre	esent? Yes X No No
Remarks:								
This data she Soils, Version		astern Mo	untains and Piedmo	nt Regi	onal Sup	plement '	Version 2.0 to inclu	de the NRCS Field Indicators of Hydric
•	pression ponding rai	nfall and	overbank, some F3	soils wi	thin wetla	and.		

Project/Site: UT to Martins (Contreras)	City/County: N	/lurphy/Cherokee	Sampling Date: 180502
Applicant/Owner: NC DMS		State: NC	Sampling Point: PI_02up
Investigator(s): Perkinson - Keith Axiom	Section, Township	, Range: Murphy	
Landform (hillside, terrace, etc.): Floodplain	Local relief (concave,	convex, none): Convex	Slope (%): 3
Subregion (LRR or MLRA): LRR N, MLRA 130B Lat: 35.0		Long: -84.034089	Datum: WGS_84
Soil Map Unit Name: Arkaqua loam 0-2% slopes occasiona		NWI classifica	
Are climatic / hydrologic conditions on the site typical for this			explain in Remarks.)
Are Vegetation _ n _, Soil _ n _, or Hydrology _ n _ sign		Normal Circumstances" present?	
Are Vegetationn_, Soiln_, or Hydrologyn_ natu	urally problematic? (If nea	eded, explain any answers in Re	emarks.)
SUMMARY OF FINDINGS – Attach site map sh	nowing sampling point	locations, transects, im	portant features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Yes No	o X within a Wetland		No X
Remarks: Wetland located along floodplain bench			
HYDROLOGY			
Wetland Hydrology Indicators:			(minimum of two required)
Primary Indicators (minimum of one is required; check all the		Surface Soil Crac	,
	atic Plants (B14)		ed Concave Surface (B8)
 -	Sulfide Odor (C1)	Drainage Patterns Mass Trim Lines	
l 	Rhizospheres on Living Roots of Reduced Iron (C4)	· · ·	
	on Reduction in Tilled Soils (C	Dry-Season Wate Crayfish Burrows	
 -	k Surface (C7)		on Aerial Imagery (C9)
 -	plain in Remarks)	Stunted or Stress	• • • •
Iron Deposits (B5)	,,	Geomorphic Posi	, ,
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard	
Water-Stained Leaves (B9)		Microtopographic	
Aquatic Fauna (B13)		FAC-Neutral Test	(D5)
Field Observations:			
Surface Water Present? Yes No X D	Depth (inches):		
	Depth (inches):		
l ————————————————————————————————————	Depth (inches):	Vetland Hydrology Present?	Yes NoX_
(includes capillary fringe)			
Describe Recorded Data (stream gauge, monitoring well, ac	riai pnotos, previous inspectio	ons), if available:	
Remarks:			
Upland			

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: PI_02up Absolute Dominant Indicator 30) Species? Tree Stratum (Plot size: % Cover Status **Dominance Test worksheet:** 1. Acer negundo 5 Yes FAC **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 5 (B) 5. Percent of Dominant Species 40.0% 6. That Are OBL, FACW, or FAC: (A/B) Prevalence Index worksheet: 5 =Total Cover Total % Cover of: Multiply by: 50% of total cover: 3 20% of total cover: **OBL** species x 1 = Sapling/Shrub Stratum (Plot size: 15 **FACW** species x 2 = 15 1. Carpinus caroliniana FAC FAC species x3 =10 x 4 = 2. **FACU** species 3. UPL species 0 x 5 = 0 (B) 4. Column Totals: 25 (A) 85 Prevalence Index = B/A = 3 40 5. 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation 8. 2 - Dominance Test is >50% 9. 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations¹ (Provide supporting 10 =Total Cover data in Remarks or on a separate sheet) 50% of total cover: 5 20% of total cover: Herb Stratum (Plot size: 5) Problematic Hydrophytic Vegetation¹ (Explain) 1. Carex 20 Yes ¹Indicators of hydric soil and wetland hydrology must be 2. Soldago Yes present, unless disturbed or problematic. 3. **Definitions of Four Vegetation Strata:** 4. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. height. 6. 7. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft 8. (1 m) tall. 9. **Herb** – All herbaceous (non-woody) plants, regardless 10. of size, and woody plants less than 3.28 ft tall. =Total Cover Woody Vine - All woody vines greater than 3.28 ft in 50% of total cover: 15 20% of total cover: Woody Vine Stratum (Plot size: 25) 1. Lonicera japonica 10 2. 3. 4 Hydrophytic 10 =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? No X Remarks: (Include photo numbers here or on a separate sheet.)

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point: PI_02up Absolute Dominant Indicator Status <u>Tree Stratum</u> (Plot size: % Cover Species? **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: 50% of total cover: 20% of total cover: Multiply by: Sapling Stratum (Plot size:) OBL species x 1 = ____ FACW species x 2 = FAC species x 3 = 3. FACU species x 4 = 4. UPL species x 5 = Column Totals: (B) (A) Prevalence Index = B/A = =Total Cover **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation 50% of total cover: 20% of total cover: Shrub Stratum (Plot size:) 2 - Dominance Test is >50% 1. 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 3. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. =Total Cover **Definitions of Five Vegetation Strata:** 50% of total cover: 20% of total cover: Tree - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. Herb Stratum (Plot size:) (7.6 cm) or larger in diameter at breast height (DBH). 1. 2. Sapling - Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less 3. than 3 in. (7.6 cm) DBH. 5. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 6. 7. Herb - All herbaceous (non-woody) plants, including 8. herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 9. 3 ft (1 m) in height. 10. Woody Vine - All woody vines, regardless of height. =Total Cover 20% of total cover: 50% of total cover: Woody Vine Stratum (Plot size: 4. Hydrophytic =Total Cover Vegetation 20% of total cover: Present? 50% of total cover: Yes No X Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point: PI_02up

	ription: (Describe t	o the dep				tor or co	onfirm the abs	sence of in	dicators.)	
Depth	Matrix			x Featur		12	T d		D	
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture		Rem	narks
0-12	7.5yr 4/6	100					Loamy/Clay	/ey		
¹ Type: C=Co	oncentration, D=Deple	etion. RM=	=Reduced Matrix. N	 IS=Mas	ked Sand	Grains	21 (ocation: PI	_=Pore Lining, N	/I=Matrix
Hydric Soil		5tion, 1tivi	- Roddodd Watin, R	io-ivido	ntou ourie	- Oranio.				atic Hydric Soils ³ :
Histosol			Polyvalue Be	low Su	rface (S8)	(MLRA	147, 148)		Muck (A10) (M	•
	pipedon (A2)		Thin Dark Su		, ,	•			t Prairie Redox	•
Black Hi			Loamy Muck				-		LRA 147, 148)	,
	n Sulfide (A4)		Loamy Gleye	•			•	_	mont Floodplain	Soils (F19)
	Layers (A5)		Depleted Ma						LRA 136, 147)	, ,
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red	Parent Material	(F21)
Depleted	Below Dark Surface	(A11)	Depleted Da	rk Surfa	ice (F7)			(ou	ıtside MLRA 12	27, 147, 148)
Thick Da	rk Surface (A12)		Redox Depre	essions	(F8)			Very	Shallow Dark S	urface (F22)
Sandy M	lucky Mineral (S1)		Iron-Mangan	ese Ma	sses (F12	2) (LRR N	١,	Othe	r (Explain in Re	marks)
Sandy G	leyed Matrix (S4)		MLRA 136	5)				_		
	edox (S5)		Umbric Surfa				-			vegetation and
	Matrix (S6)		Piedmont Flo				-		ind hydrology m	-
	face (S7)		Red Parent I	Material	(F21) (M	LRA 127	, 147, 148)	unles	ss disturbed or p	oroblematic.
	_ayer (if observed):									
Type:										
Depth (ir	nches):						Hydric Soil	Present?	Yes	No _X
Remarks:										
This data she Soils, Versio	eet is revised from Ea	astern Mou	untains and Piedmo	nt Regi	onal Sup _l	olement \	Version 2.0 to i	include the	NRCS Field Inc	dicators of Hydric
,	ng floodplain bench									
	.9									

Project/Site: UT to Martins (Contreras)	City/Count	ty: Murphy/Cherokee	Sampling Date: 180502
Applicant/Owner: NC DMS		State: NC	Sampling Point: PI_02Wet
Investigator(s): Perkinson - Keith Axiom	Section, Town	ship, Range: Murphy	
Landform (hillside, terrace, etc.): Floodplain	Local relief (conc	ave, convex, none): Convex	Slope (%): 3
Subregion (LRR or MLRA): LRR N, MLRA 13	,	Long: -84.034089	Datum: WGS_84
Soil Map Unit Name: Arkaqua loam 0-2% slo			ation: BHWF
Are climatic / hydrologic conditions on the site	· ·		explain in Remarks.)
Are Vegetation, Soil, or Hydrol		re "Normal Circumstances" present	
Are Vegetationn_, Soiln_, or Hydrol	ogy n naturally problematic? (I	f needed, explain any answers in R	emarks.)
SUMMARY OF FINDINGS – Attach	site map showing sampling po	oint locations, transects, in	nportant features, etc.
Hydric Soil Present?	Yes X No Is the Samp Yes X No within a We		No
Remarks: Wetland located along floodplain bench			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators	s (minimum of two required)
Primary Indicators (minimum of one is require		Surface Soil Cra	` '
Surface Water (A1)	True Aquatic Plants (B14)		ted Concave Surface (B8)
X High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterr	
X Saturation (A3)	Oxidized Rhizospheres on Living Ro		
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Wat	
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils		
Drift Deposits (B3)	Thin Muck Surface (C7)		e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stres	` '
Iron Deposits (B5)	2	X Geomorphic Pos Shallow Aquitaro	, ,
Inundation Visible on Aerial Imagery (B7 Water-Stained Leaves (B9))	Microtopographic	` '
Aquatic Fauna (B13)		X FAC-Neutral Tes	
		T AC-Neutral Tes	St (D3)
Field Observations:			
Surface Water Present? Yes	No X Depth (inches):		
Water Table Present? Yes X			
0 1 1 5 1000111	Deptil (inclies).		V V N
	No X Depth (inches): No Depth (inches): 1 No Depth (inches): 0	Wetland Hydrology Present?	Yes <u>X</u> No
(includes capillary fringe)		, ,	Yes <u>X</u> No
		, ,	Yes X No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes <u>X</u> No
(includes capillary fringe)		, ,	Yes X No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes <u>X</u> No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes X No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes <u>X</u> No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes X No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes X No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes X No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes <u>X</u> No
(includes capillary fringe) Describe Recorded Data (stream gauge, more		, ,	Yes X No

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: PI_02Wet Absolute Dominant Indicator 30) Tree Stratum (Plot size: % Cover Species? Status **Dominance Test worksheet:** 1. Acer negundo 5 Yes FAC **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 5 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 80.0% (A/B) Prevalence Index worksheet: 5 =Total Cover Total % Cover of: Multiply by: 50% of total cover: 3 20% of total cover: **OBL** species x 1 = Sapling/Shrub Stratum (Plot size: 15 **FACW** species 20 x 2 = 15 1. Salix sericea 25 OBL FAC species x3 =10 x 4 = 2. **FACU** species 0 3. UPL species x 5 = 0 4. Column Totals: 70 (A) 150 (B) Prevalence Index = B/A = 2 14 5. 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation 8. X 2 - Dominance Test is >50% 9. X 3 - Prevalence Index is ≤3.0¹ 4 - Morphological Adaptations¹ (Provide supporting 25 =Total Cover data in Remarks or on a separate sheet) 50% of total cover: 13 20% of total cover: 5_) Herb Stratum (Plot size: Problematic Hydrophytic Vegetation¹ (Explain) 1. Impatiens capensis 20 Yes **FACW** ¹Indicators of hydric soil and wetland hydrology must be 2. Microstegium vimineum FAC present, unless disturbed or problematic. 3. **Definitions of Four Vegetation Strata:** 4. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. height. 6. 7. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft 8. (1 m) tall. 9. **Herb** – All herbaceous (non-woody) plants, regardless 10. of size, and woody plants less than 3.28 ft tall. =Total Cover Woody Vine - All woody vines greater than 3.28 ft in height. 50% of total cover: 15 20% of total cover: Woody Vine Stratum (Plot size: 25) 1. Lonicera japonica 10 2. 3. 4 Hydrophytic 10 =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? Yes X No Remarks: (Include photo numbers here or on a separate sheet.)

VEGETATION (Five Strata) – Use scientific names of plants. Sampling Point:

<u>Tree Stratum</u> (Plot size:)	Absolute Dominant Indicato % Cover Species? Status	Dominance Test worksheet:
1.		Number of Dominant Species
2.		That Are OBL, FACW, or FAC:(A)
3		Total Number of Dominant
4.		Species Across All Strata:(B)
5		 Percent of Dominant Species
6.		That Are OBL, FACW, or FAC:(A/B)
	=Total Cover	Prevalence Index worksheet:
50% of total cover:	20% of total cover:	Total % Cover of: Multiply by:
Sapling Stratum (Plot size:)		OBL species x 1 =
1.		FACW species x 2 =
2.		FAC species x 3 =
3.		FACU species x 4 =
4.	·	UPL species x 5 =
5.		Column Totals: (A) (B)
6.		Prevalence Index = B/A =
	=Total Cover	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of total cover:	1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size:)		2 - Dominance Test is >50%
1		3 - Prevalence Index is ≤3.0 ¹
		4 - Morphological Adaptations ¹ (Provide supporting
3		data in Remarks or on a separate sheet)
4		 Problematic Hydrophytic Vegetation¹ (Explain)
5.	·	
		 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
6	=Total Cover	Definitions of Five Vegetation Strata:
50% of total cover:	20% of total cover:	Tree - Woody plants, excluding woody vines
50% of total cover:	20% of total cover:	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in.
Herb Stratum (Plot size:)		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
Herb Stratum (Plot size:) 1		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
Herb Stratum (Plot size:)		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines,
Herb Stratum (Plot size:) 1		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
Herb Stratum (Plot size:)		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH.
Herb Stratum (Plot size:)		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
Herb Stratum (Plot size:)		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
Herb Stratum (Plot size:) 1 2 3 4 5 6 7		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including
Herb Stratum (Plot size:) 1 2 3 4 5 6 7 8		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
Herb Stratum (Plot size:) 1 2 3 4 5 6 7 8 9		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody
Herb Stratum (Plot size:) 1 2 3 4 5 6 7 8 9 10		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately
Herb Stratum (Plot size:) 1 2 3 4 5 6 7 8 9		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height. Hydrophytic
Herb Stratum (Plot size:)	=Total Cover 20% of total cover: =Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height. Hydrophytic Vegetation
Herb Stratum (Plot size:)	=Total Cover 20% of total cover: =Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height. Hydrophytic

PI_02Wet

SOIL Sampling Point: PI_02Wet

Profile Desc	cription: (Describe t	o the dep	th needed to docu	ıment th	ne indica	tor or co	onfirm the abse	nce of indi	cators.)	
Depth	Matrix			c Feature					•	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remark	s
0-2	7.5yr 4/4	100					Loamy/Claye	y		
2-10	7.5yr 5/2	75	7.5yr 5/6	25	С	М	Loamy/Claye	ey Pro	ominent redox co	ncentrations
10-12	7.5yr 5/6	100					Loamy/Claye	у	Dense C	ay
-	·									
¹ Type: C=C	oncentration, D=Deple	etion, RM	Reduced Matrix, M	IS=Masl	ked Sand	Grains.	² Loc	ation: PL=F	Pore Lining, M=M	latrix.
Hydric Soil		· · · · · · · · · · · · · · · · · · ·	•						for Problematic	
Histosol	(A1)		Polyvalue Be	low Sur	face (S8)	(MLRA			uck (A10) (MLR	-
	pipedon (A2)		Thin Dark Su			-			Prairie Redox (A1	-
	istic (A3)		Loamy Muck						A 147, 148)	•
Hydroge	en Sulfide (A4)		Loamy Gleye	ed Matrix	(F2)			Piedmo	nt Floodplain So	ils (F19)
Stratifie	d Layers (A5)		X Depleted Ma	trix (F3)			•	(MLR	A 136, 147)	
2 cm Mu	uck (A10) (LRR N)		Redox Dark	Surface	(F6)		_	Red Pa	rent Material (F2	1)
Deplete	d Below Dark Surface	(A11)	Depleted Da	rk Surfa	ce (F7)			(outs	ide MLRA 127, 1	47, 148)
Thick Da	ark Surface (A12)		X Redox Depre	ssions ((F8)		-	Very Sh	nallow Dark Surfa	ice (F22)
Sandy N	Mucky Mineral (S1)		Iron-Mangan	ese Mas	ses (F12	2) (LRR 1	۸,	Other (I	Explain in Remar	ks)
	Gleyed Matrix (S4)		MLRA 136	-						
	Redox (S5)		Umbric Surfa				-		of hydrophytic ve	-
	d Matrix (S6)		Piedmont Flo				· · · · · · · · · · · · · · · · · · ·			
Dark Su	ırface (S7)		Red Parent N	/laterial	(F21) (M	LRA 127	, 147, 148)	unless	disturbed or prob	lematic.
Restrictive	Layer (if observed):									
Type:										
Depth (i	nches):						Hydric Soil F	Present?	Yes X	No
Soils, Version	neet is revised from Ea on 8.0, 2016. ng floodplain bench	astern Mou	ıntains and Piedmo	nt Regio	onal Sup _l	olement '	Version 2.0 to in	clude the NF	RCS Field Indica	tors of Hydric

Project/Site: UT to Martins (Contreras)	City/County: Murphy/Ch	nerokee	Sampling Date: 180502			
Applicant/Owner: NC DMS		State: NC	Sampling Point: PX_120u			
Investigator(s): Perkinson, Keith - Axiom	Section, Township, Range:	Murphy				
Landform (hillside, terrace, etc.): Floodplain L	_ _ocal relief (concave, convex, ı	none): convex	Slope (%): 5			
Subregion (LRR or MLRA): LRR N, MLRA 130B Lat: 35.030705	Long: -8	34.036093	Datum: WGS-84			
Soil Map Unit Name: Junaluska-Brasstown Complex		NWI classifica	tion: UPL			
Are climatic / hydrologic conditions on the site typical for this time of y	/ear? Yes X		explain in Remarks.)			
Are Vegetationn_, Soiln_, or Hydrologyn_ significantly		ircumstances" present?				
Are Vegetation $\underline{ }$, Soil $\underline{ }$, or Hydrology $\underline{ }$ naturally pro	blematic? (If needed, exp	olain any answers in Re	emarks.)			
SUMMARY OF FINDINGS – Attach site map showing	sampling point location	ons, transects, im	portant features, etc.			
Hydrophytic Vegetation Present? Yes No X Hydric Soil Present? Yes No X Wetland Hydrology Present? Yes No X	Is the Sampled Area within a Wetland?	Yes	No X			
Remarks: Upland						
Opidita						
HYDROLOGY						
Wetland Hydrology Indicators:		Secondary Indicators	(minimum of two required)			
Primary Indicators (minimum of one is required; check all that apply)		Surface Soil Crac	` '			
Surface Water (A1) True Aquatic Plant			ed Concave Surface (B8)			
High Water Table (A2) Hydrogen Sulfide (Drainage Patterns				
	eres on Living Roots (C3)	Moss Trim Lines (B16) Dry-Season Water Table (C2)				
Water Marks (B1) Presence of Reduction Sediment Deposits (B2) Recent Iron Reduction	etion in Tilled Soils (C6)					
Drift Deposits (B3) Recent flor Reduct Recent flor Reduct Thin Muck Surface		Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)				
Algal Mat or Crust (B4) Other (Explain in R		Stunted or Stress	• • • •			
Iron Deposits (B5)	.o.mamo)	Geomorphic Posit	` '			
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard	, ,			
Water-Stained Leaves (B9)		Microtopographic				
Aquatic Fauna (B13)		FAC-Neutral Test				
Field Observations:						
Surface Water Present? Yes No X Depth (inc	ches): 0					
	ches): 0					
Saturation Present? Yes No Depth (inc	ches): 0 Wetland I	Hydrology Present?	Yes No _ X			
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photo	os, previous inspections), if av	ailable:				
Remarks:						
Upland just outside of wetland near toe of slope						

VEGETATION (Four Strata) – Use scientific names of plants.

Troe Stratum (Plot size: 20)	Absolute % Cover	Dominant Species?	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30)			Status	
1. Acer rubrum	20	Yes	FAC	Number of Dominant Species
2. Acer negundo	20	Yes	FAC	That Are OBL, FACW, or FAC:3(A)
3. Liriodendron tulipifera	10	Yes	FACU	Total Number of Dominant
4.				Species Across All Strata: 8 (B)
5.				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 37.5% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 2	5 20%	of total cover:	10	OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15)				FACW species 0 x 2 = 0
Sambucus canadensis	10	Yes	FAC	FAC species 50 x 3 = 150
2. Ilex opaca	10	Yes	FACU	FACU species 30 x 4 = 120
3.				UPL species 0 x 5 = 0
4				Column Totals: 80 (A) 270 (B)
5				Prevalence Index = B/A = 3.38
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9.				3 - Prevalence Index is ≤3.0 ¹
	20	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 1	0 20%	of total cover:	4	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Rubus	10	Yes		
Toxicodendron radicans	10	Yes	FAC	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
3.		103	TAO	Definitions of Four Vegetation Strata:
4.				
				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
5.				height.
6.				, and the second
7.				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9.				
10				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
	20	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover:1	0 20%	of total cover:	4	height.
Woody Vine Stratum (Plot size:)				
1. Lonicera japonica	10	Yes	FACU	
2.				
3.				
4.				
5.				Undrankida
	10	=Total Cover		Hydrophytic Vegetation
50% of total cover:	20%	of total cover:	2	Present? Yes No X
				<u> </u>
Remarks: (Include photo numbers here or on a sepa	arate sneet.)			

Sampling Point: PX_120up

VEGETATION (Five Strata) – Use scientific names of plants.

<u>Tree Stratum</u> (Plot size:)	Absolute Dominant Indicator % Cover Species? Status	Dominance Test worksheet:
1		Number of Dominant Species
2.		That Are OBL, FACW, or FAC:(A)
3.		_ Total Number of Dominant
4.		Species Across All Strata:(B)
5		Percent of Dominant Species
6		That Are OBL, FACW, or FAC:(A/B)
	=Total Cover	Prevalence Index worksheet:
50% of total cover:	20% of total cover:	Total % Cover of: Multiply by:
Sapling Stratum (Plot size:)		OBL species x 1 =
1		FACW species x 2 =
2		FAC species x 3 =
3.		FACU species x 4 =
4.		UPL species x 5 =
5.		Column Totals: (A) (B)
6.		Prevalence Index = B/A =
	=Total Cover	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of total cover:	1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size:)		2 - Dominance Test is >50%
		3 - Prevalence Index is ≤3.0¹
2		4 - Morphological Adaptations ¹ (Provide supporting
3.		data in Remarks or on a separate sheet)
1		 Problematic Hydrophytic Vegetation¹ (Explain)
··		
6		Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
	=Total Cover	Definitions of Five Vegetation Strata:
50% of total cover:	20% of total cover:	Tree – Woody plants, excluding woody vines,
0070 01 total 00001.	20% of total cover.	_ Tree - woody plants, excluding woody vines,
Herb Stratum (Plot size:)		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
Herb Stratum (Plot size:) 1		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
Herb Stratum (Plot size:) 1.		approximately 20 ft (6 m) or more in height and 3 in.
Herb Stratum (Plot size:) 1.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines,
Herb Stratum (Plot size:) 1.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH.
Herb Stratum (Plot size:) 1. 2. 3. 4.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
Herb Stratum (Plot size:) 1 2 3 4 5		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
Herb Stratum (Plot size:) 1 2 3 4 5 6 7		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including
Herb Stratum (Plot size:) 1 2 3 4 5 6 7 8		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height. Hydrophytic
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 50% of total cover:	=Total Cover 20% of total cover: =Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height. Hydrophytic Vegetation
Herb Stratum (Plot size:)	=Total Cover 20% of total cover: =Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height. Hydrophytic

Sampling Point: PX_120up

SOIL Sampling Point: PX_120up

	ription: (Describe t	o the dep				ator or co	onfirm the abs	ence of i	ndicators.)	
Depth	Matrix			Featur		12	T.,,,t.,,,		D	and a
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture			narks
0-6	10yr 5/3	85	10yr 5/6	15	<u>C</u>	<u>M</u>	Loamy/Clay	ey	Distinct redox	concentrations
6-12	10yr 5/3	100					Loamy/Clay	ey		
			_							_
¹Type: C=Co	oncentration, D=Depl	etion, RM	=Reduced Matrix, M	IS=Mas	ked Sand	Grains.	² Lc	cation: P	L=Pore Lining, N	/i=Matrix.
Hydric Soil I										atic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Be	low Su	face (S8	(MLRA	147, 148)	2 cm	n Muck (A10) (M	LRA 147)
Histic Ep	pipedon (A2)		Thin Dark Su	ırface (S	69) (MLR	A 147, 1	48)	Coa	st Prairie Redox	(A16)
Black His	stic (A3)		Loamy Muck	y Miner	al (F1) (N	ILRA 136	5)	(M	ILRA 147, 148)	
Hydroge	n Sulfide (A4)		Loamy Gleye	ed Matri	x (F2)			Pied	lmont Floodplain	Soils (F19)
Stratified	l Layers (A5)		Depleted Ma	trix (F3)				(M	ILRA 136, 147)	
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)				Parent Material	
	Below Dark Surface	(A11)	Depleted Da					-	utside MLRA 12	
	ark Surface (A12)		? Redox Depre						/ Shallow Dark S	, ,
	lucky Mineral (S1)		Iron-Mangan		sses (F12	2) (LRR N	١,	Othe	er (Explain in Re	marks)
	leyed Matrix (S4)		MLRA 136	•				3		
	edox (S5)		Umbric Surfa				-		ors of hydrophytic	-
	Matrix (S6)		Piedmont Flo				-		and hydrology m	-
	rface (S7)		Red Parent N	viateriai	(FZ1) (IVI	LKA 121	, 147, 140)	unie	ss disturbed or p	ловіетанс.
	_ayer (if observed):									
Type: Depth (ir	ochoc):						Hydric Soil	Drocont?	Yes	No X
. ,	icries).						nyunc son	Present?		
Remarks:	not in ravisad from Ed	actorn Ma	untains and Diadma	nt Bogi	anal Cun	nlomont \	Jaraian 2.0 to i	aduda tha	NDCS Field Inc	licators of Uvdria
Soils, Version	eet is revised from Ea n 8.0. 2016.	astern ivio	untains and Fledinc	iii Kegi	oriai Sup	piement	version 2.0 to i	iciude trie	NKCS FIEIG INC	ilicators of Hydric
-	of toe slope into wetla	ınd								

Project/Site: UT to Martins (Contreras)	City/County: Murphy/Che	erokee	Sampling Date: 180502			
Applicant/Owner: NC DMS		State: NC	Sampling Point: PX_120wet			
Investigator(s): Perkinson, Keith - Axiom	Section, Township, Range: I	Murphy	_			
Landform (hillside, terrace, etc.): Floodplain	Local relief (concave, convex, no		Slope (%): 5			
Subregion (LRR or MLRA): LRR N, MLRA 130B Lat: 35.03	 0705 Long: -84	4.036093	Datum: WGS-84			
Soil Map Unit Name: Junaluska-Brasstown Complex		NWI classificat	tion: RSF			
Are climatic / hydrologic conditions on the site typical for this ti	me of year? Yes X		explain in Remarks.)			
Are Vegetationn_, Soiln_, or Hydrologyn_ signif		cumstances" present?				
Are Vegetation $\underline{ n}$, Soil $\underline{ n}$, or Hydrology $\underline{ n}$ natur	ally problematic? (If needed, expla	ain any answers in Re	marks.)			
SUMMARY OF FINDINGS – Attach site map sho	owing sampling point location	ns, transects, im	portant features, etc.			
Hydrophytic Vegetation Present? Yes X No Hydric Soil Present? Yes X No Wetland Hydrology Present? Yes X No	Is the Sampled Area within a Wetland?	Yes X	No			
Remarks:						
HYDROLOGY						
Wetland Hydrology Indicators:	!	Secondary Indicators	(minimum of two required)			
Primary Indicators (minimum of one is required; check all tha		Surface Soil Crack	` ,			
 -	c Plants (B14)	Sparsely Vegetated Concave Surface (B8)				
	Sulfide Odor (C1)	Drainage Patterns				
	nizospheres on Living Roots (C3)	Moss Trim Lines (B16)				
	f Reduced Iron (C4)	Dry-Season Water Table (C2)				
 -	Reduction in Tilled Soils (C6)	Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)				
l 	Surface (C7)					
Algal Mat or Crust (B4)Other (Expl X Iron Deposits (B5)	ain in Remarks)	X Geomorphic Posit				
Inundation Visible on Aerial Imagery (B7)	-	Shallow Aquitard				
X Water-Stained Leaves (B9)	-	X Microtopographic				
Aquatic Fauna (B13)	-	X FAC-Neutral Test				
Field Observations:	-	<u> </u>	(50)			
	pth (inches): 0					
	pth (inches): 0					
		ydrology Present?	Yes X No			
(includes capillary fringe)	par (menee): Tremana 11.	ya. o.ogy i rocom:	166 <u>X</u> N6			
Describe Recorded Data (stream gauge, monitoring well, aer	ial photos, previous inspections), if ava	nilable:				
	, ,,					
Remarks: Water at surface, really nice wetland near the top of a crenula	ation					
water at surface, really flice wetland flear the top of a cremula	ation					

VEGETATION (Four Strata) – Use scientific names of plants.

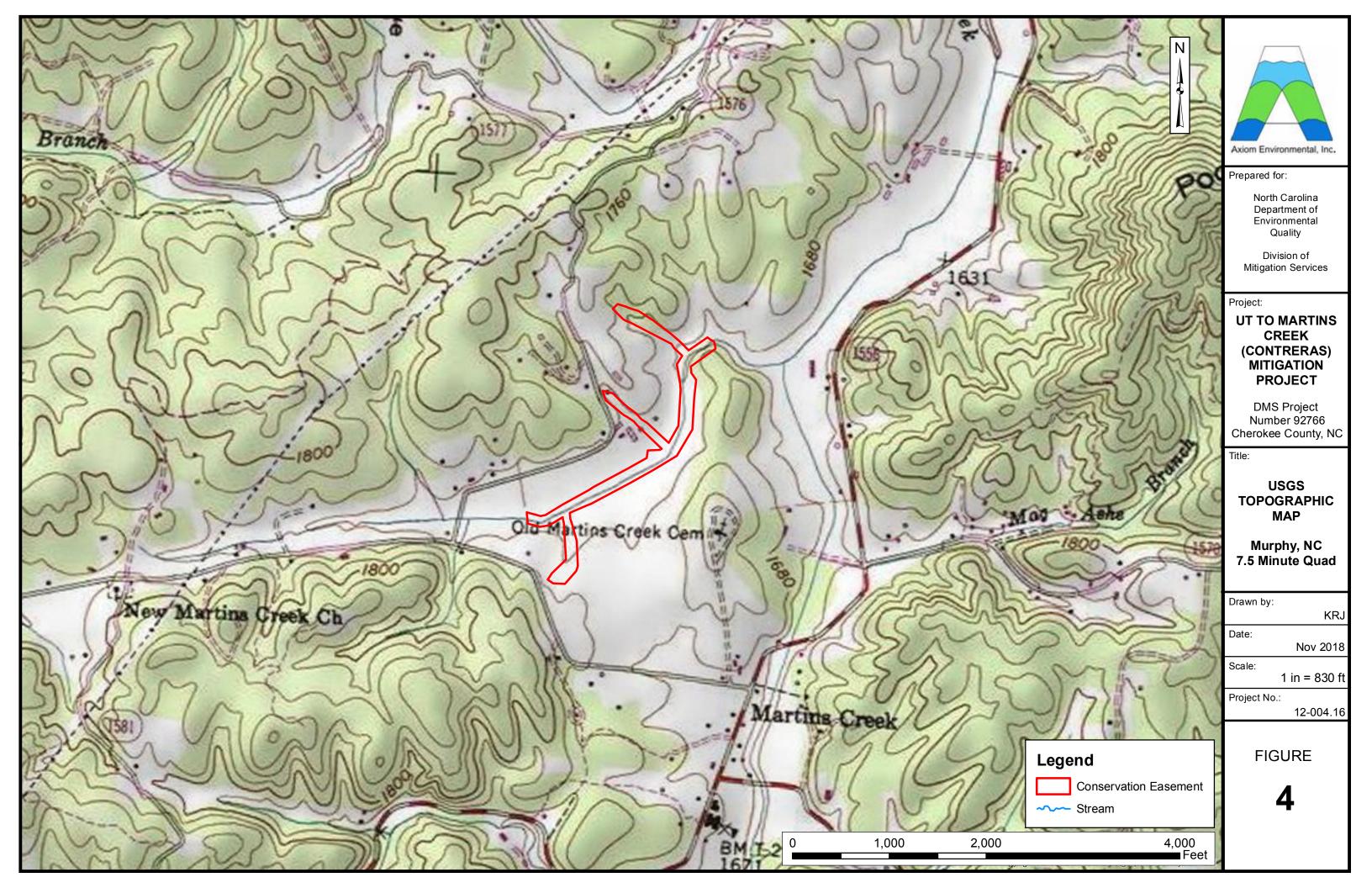
<u>Tree Stratum</u> (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer rubrum	20	Yes	FAC	Number of Dominant Species
2. Acer negundo	20	Yes	FAC	That Are OBL, FACW, or FAC: 4 (A)
3.				Total Number of Dominant
4.				Species Across All Strata: 5 (B)
5.				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 80.0% (A/B)
7.				Prevalence Index worksheet:
	40	=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 20	20%	of total cover:	8	OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:15)				FACW species 20 x 2 = 40
1. Sambucus canadensis	10	Yes	FAC	FAC species 40 x 3 = 120
2				FACU species 0 x 4 = 0
3.				UPL species 0 x 5 = 0
4				Column Totals: 60 (A) 160 (B)
5				Prevalence Index = B/A = 2.67
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				X 3 - Prevalence Index is ≤3.0 ¹
	10	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 5	20%	of total cover:	2	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Impatiens capensis	10	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Juncus effusus	10	Yes	FACW	present, unless disturbed or problematic.
3				Definitions of Four Vegetation Strata:
4				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of height.
6				
7.				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft
8.				(1 m) tall.
9.				()
10.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11		Total Causer		
FOO/ of total appear		=Total Cover of total cover:	4	Woody Vine – All woody vines greater than 3.28 ft in height.
50% of total cover: 10 <u>Woody Vine Stratum</u> (Plot size: 30)	20%	or total cover.	4	
1				
3				
4.				
5.				
·		=Total Cover		Hydrophytic
50% of total cover:		of total cover:		Vegetation Present? Yes X No
Remarks: (Include photo numbers here or on a separ	are sneet.)			

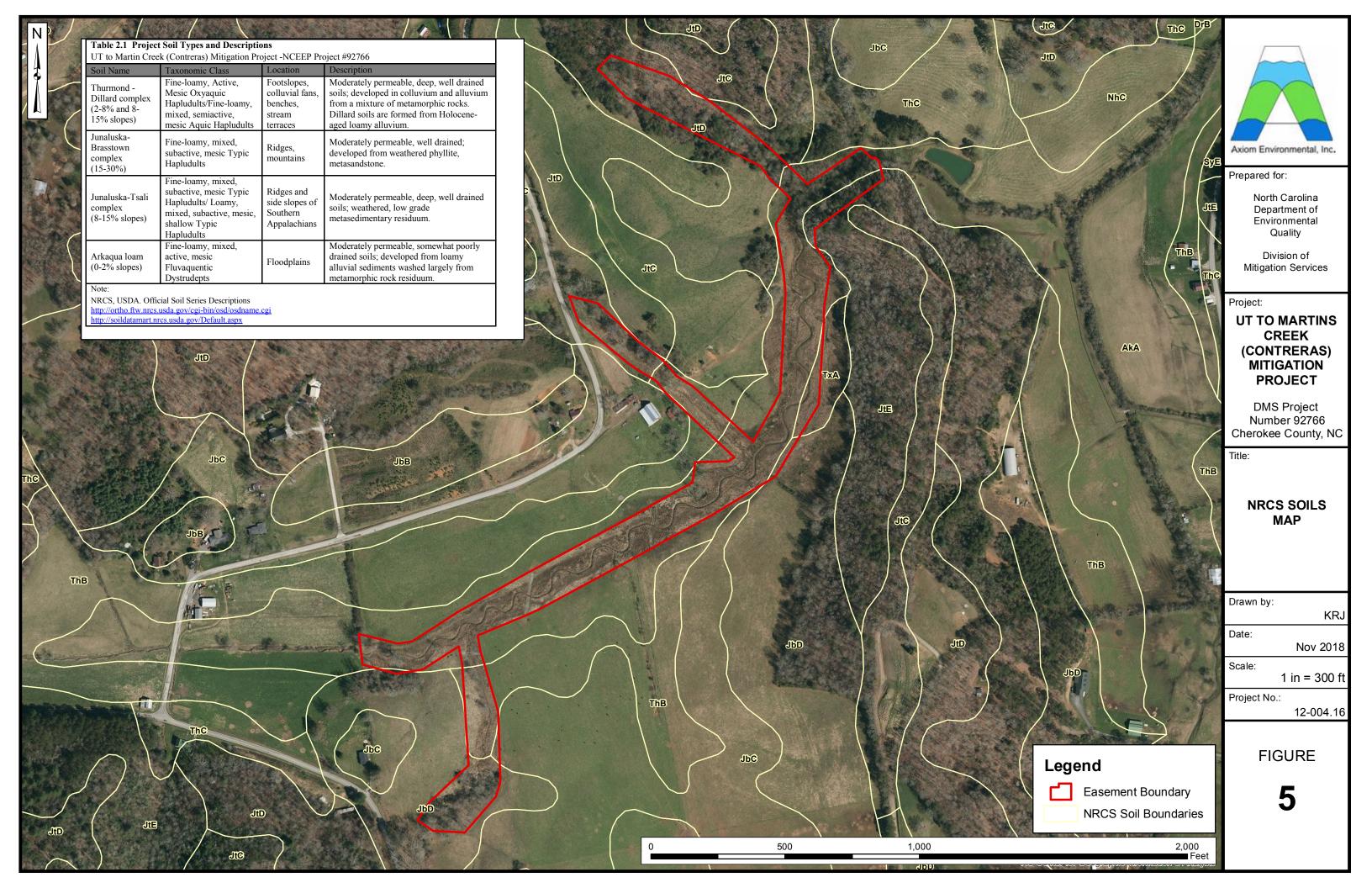
Sampling Point:

PX_120wet

VEGETATION (Five Strata) – Use scientific names of plants.

<u>Tree Stratum</u> (Plot size:)	Absolute Dominant Indicator % Cover Species? Status	Dominance Test worksheet:
1		Number of Dominant Species
2.		That Are OBL, FACW, or FAC:(A)
3.		Total Number of Dominant
4.		Species Across All Strata: (B)
5.		Percent of Dominant Species
6.		That Are OBL, FACW, or FAC: (A/B)
	=Total Cover	Prevalence Index worksheet:
50% of total cover:	20% of total cover:	Total % Cover of: Multiply by:
Sapling Stratum (Plot size:)		OBL species x 1 =
1.		FACW species x 2 =
2.		FAC species x 3 =
3.		FACU species x 4 =
4.		UPL species x 5 =
-		Column Totals: (A) (B)
5. 6.		Prevalence Index = B/A =
· -	=Total Cover	Hydrophytic Vegetation Indicators:
50% of total cover:		1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size:)	2070 01 total cover.	2 - Dominance Test is >50%
		3 - Prevalence Index is ≤3.0 ¹
2.		4 - Morphological Adaptations ¹ (Provide supporting
<u></u>		data in Remarks or on a separate sheet)
3.		<u>-</u>
4		Problematic Hydrophytic Vegetation ¹ (Explain)
5		Indicators of hydric soil and wetland hydrology must be
6		present, unless disturbed or problematic.
	=Total Cover	Definitions of Five Vegetation Strata:
50% of total cover:	20% of total cover:	Tree – Woody plants, excluding woody vines,
50% of total cover:) Herb Stratum (Plot size:)	20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in.
Herb Stratum (Plot size:)		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines,
Herb Stratum (Plot size:) 1		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
Herb Stratum (Plot size:) 1.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines,
Herb Stratum (Plot size:) 1.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines,
Herb Stratum (Plot size:) 1. 2. 3. 4.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH.
Herb Stratum (Plot size:) 1 2 3 4 5		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines,
Herb Stratum (Plot size:) 1 2 3 4 5 6 7		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.		approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height.
Herb Stratum (Plot size:)	=Total Cover 20% of total cover: =Total Cover	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height. Hydrophytic Vegetation
Herb Stratum (Plot size:)	=Total Cover 20% of total cover: =Total Cover 20% of total cover:	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub - Woody Plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody Vine – All woody vines, regardless of height.


Sampling Point: PX_120wet


SOIL Sampling Point: PX_120wet

Profile Desc	ription: (Describe to	o the dep	th needed to doc	ıment t	he indica	ator or co	onfirm the absen	ce of indic	ators.)	
Depth	Matrix		Redo	x Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarl	ks
0-4	10yr 5/3	85	10yr 5/6	15	С	M	Loamy/Clayey	D	istinct redox co	ncentrations
4-12	10yr 5/2	95	10yr 5/6	5	<u>C</u>	<u>M</u>	Loamy/Clayey	Pro	minent redox c	oncentrations
					_					
¹Type: C=Co	oncentration, D=Deple	etion, RM	=Reduced Matrix, N	/S=Mas	ked Sand	d Grains.	² Loca	tion: PL=P	ore Lining, M=N	Matrix.
Hydric Soil										: Hydric Soils ³ :
Histosol	(A1)		Polyvalue Be	elow Sur	face (S8	(MLRA	147, 148)	2 cm Mu	uck (A10) (MLR	A 147)
Histic Ep	pipedon (A2)		Thin Dark S	urface (S	9) (MLR	A 147, 14	-	Coast P	rairie Redox (A	16)
Black Hi	stic (A3)		Loamy Muck	y Miner	al (F1) (N	ILRA 136	<u> </u>	(MLR	A 147, 148)	
— Hydroge	n Sulfide (A4)		Loamy Gley	-			•	-	nt Floodplain So	oils (F19)
Stratified	Layers (A5)		X Depleted Ma					(MLR	A 136, 147)	, ,
	ck (A10) (LRR N)		Redox Dark					-	ent Material (F2	21)
	Below Dark Surface	(A11)	Depleted Da						de MLRA 127,	·
Thick Da	ark Surface (A12)		X Redox Depre	essions	(F8)			Very Sh	allow Dark Surf	ace (F22)
Sandy M	lucky Mineral (S1)		Iron-Mangar	ese Ma	sses (F12	2) (LRR N	 I,	Other (E	xplain in Rema	rks)
Sandy G	leyed Matrix (S4)		MLRA 136	6)						
Sandy R	edox (S5)		Umbric Surfa	ace (F13	B) (MLRA	122, 136	3 ₁	ndicators o	of hydrophytic ve	egetation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	19) (MLR	A 148)	wetland	hydrology must	be present,
Dark Su	face (S7)		Red Parent	Material	(F21) (M	LRA 127	147, 148)	unless d	listurbed or prol	olematic.
Restrictive I	_ayer (if observed):									
Type:	,									
Depth (ir	nches):						Hydric Soil Pr	esent?	Yes X	No
Remarks: This data she	eet is revised from Ea	stern Mou	untains and Piedmo	ont Regi	onal Sup	plement \	ersion 2.0 to incl	ude the NR	CS Field Indica	ators of Hydric
Soils, Versio	n 8.0, 2016.									

APPENDIX G SUPPLEMENTAL DATA

Figure 4. USGS Topography Map Figure 5. NRCS Soils Map Preconstruction Photographs

UT1 to Martin Creek (Contreras Site) Project Site Photo Log

Notes: Photos depict common channel features across Contreras project Site.

* Pictures taken in January 2009

UT1-4 at spring looking downstream; cattle recently accessed site